ACCLAIM LIGHTING

AL Driver series

CONTENTS

INTRODUCTION 2
Welcome 2
Safety 2
INSTALLATION 3
Mounting 3
Input connections 3
Output port connections 5
Output port fuses 6
Input power wiring 6
Connector cover 7
AL Driver 1 8
AL Driver 4 10
OPERATION (200/400/800) 12
Menu navigation 12
Choosing a control mode 18
AL Driver 200 - Channel and load settings (DMX and DALI) 19
AL Driver 400 - Channel and load settings (DMX and DALI) 20
AL Driver 800 - Channel and load settings (DMX and DALI) 21
Choosing a base address (DMX and DALI) 22
Choosing the load type (Manual and Auto modes) 22
Setting a static color mix (Manual mode) 23
Choosing a chase pattern (Auto mode) 23
Configuration via RDM 24
AL Driver 200 - DMX/DALI address layouts 26
AL Driver 400 - DMX/DALI address layouts 29
AL Driver 800 - DMX/DALI address layouts 32
FURTHER INFORMATION 35
AL Driver 1 and 4 - Specifications 35
AL Driver 200, 400 and 800 - Specifications 35
AL Driver 1 and 4 - Dimensions 36
AL Driver 200 - Dimensions 37
AL Driver 400 - Dimensions 38
AL Driver 800 - Dimensions 39
Limited product warranty 40

INTRODUCTION

WELCOME

Welcome to the AL Driver series from Acclaim Lighting, a comprehensive range of constant voltage drivers which support a variety of LED fixture types: RGBW, RGB, Ai Dim, single color or Dynamic White. The entry level to the range is fulfilled by the highly compact AL Driver 1 with its single-port to drive one-color LED tapes. The AL Driver 4 is also a compact singleport unit but with the ability to drive RGB or RGBW tapes. The AL Driver 200, 400 and 800 offer a considerable step up in capacity as they feature integral power supplies and offer multiple ports which can be configured to support a range of 24VDC LED fixture types.
The multiple ports of the AL Driver 200, 400 and 800 units can either operate in unison or you can control them individually. To suit your installation, these AL Driver models can accept control inputs in the digital formats: DMX or DALI; or alternatively in the analog formats 0-10V (current source) or 1-10V (current sink). AL Driver 1 units also support DMX plus 0-10V/1-10V, while the AL Driver 4 accepts DMX only.
Additionally, you can use all AL Drivers independently of any external control. Depending on the model, they can create static color mixes, set dimming levels for single color or apply dynamic chase patterns. On AL Driver 200, 400 and 800 models, a clear LCD display and three buttons allow you to navigate the internal menu system; plus these models also support RDM (Remote Device Management) so that basic features can be remotely configured.

SAFETY

- Ensure the power input is supplied from a correctly fused, earthed and environmentally protected location.
- AL Drivers have either IP20 or IP22 ratings for dry location installations only.

Note: There are two forms of 0-10V analog control: Current source and current sink. The former was commonly used for theatrical dimming prior to the advent of digital techniques, such as $D M X$; the latter is used mainly as a control technique for fluorescent dimming ballasts. The primary difference between the two schemes lies with where the control voltage should be generated: Current source requires the controlling device to provide (source) the control voltage; whereas Current sink mandates that the controlled fixture must provide the voltage. The AL Driver 1, 200, 400 and 800 models support both variants.

INSTALLATION

The majority of this guide covers the multi-port AL Driver 200, AL Driver 400 and AL Driver 800 models. For details about the single port AL Driver 1 and AL Driver 4 models, please see pages 8 and 10 respectively.

MOUNTING

The AL Driver 200, 400 and 800 models can be wall mounted either vertically (with the output connectors facing downwards) or horizontally as required. Four slotted holes ($\varnothing 0.55^{\prime \prime} / 14 \mathrm{~mm}$ leading to $\varnothing 0.31^{\prime \prime} / 8 \mathrm{~mm}$) are built into the backplane for mounting purposes.

INPUT CONNECTIONS

AL Drivers can be controlled by any of four external signal types: DMX, DALI, 1-10V or 0-10V. DMX and DALI are digital signals that allow multiple channels to be addressed; $0-10 \mathrm{~V}$ and 1-10V are analog signals that can control one channel only (all outputs will respond equally when 0-10V/1-10V modes are used).

DMX

AL Drivers have a DMX IN port as well as a DMX OUT port. Each uses a 3-pin terminal block (supplied). See below for useful DMX tips. Connect your DMX cables to the terminal blocks as shown here:
Insert the terminal block into the DMX/RDM IN socket and ensure that it fully clicks into place. Repeat for the
DMX/RDM OUT if the control signal needs to be fed to another device.

TIPS FOR ACHIEVING SUCCESSFUL DMX CONTROL

- Do not exceed a total cable length of $3,900 \mathrm{ft}(1200 \mathrm{~m})$ without buffering.
- Do not exceed a total of 32 devices/fixtures on a single line without buffering.
- Use only connection cables with a characteristic impedance of 120Ω, preferably where the DMX + and DMX - data lines are twisted around each other and the ground link exists as a coaxial screen surrounding the inner cores, such as Belden ${ }^{\oplus} 9842$ or equivalent.
- Connect a 120Ω terminating resistor between the DMX + and DMX - output connections of the final fixture.
- Do not introduce a passive Y-split into the control cabling. If it is necessary to split the control link in order feed fixtures located in different directions, use a powered DMX splitter/buffer.
- Ensure that the DMX + and DMX - connections do not become crossed at any point.

DALI

AL Drivers have a single DALI port that uses a 2-pin terminal block (supplied). For best results always use mains rated cables with 600 V isolation and core with at least 1 mm cross section. DALI signals are not polarity dependent and so can be connected either way round:

Insert the terminal block into the DALI IN

socket and ensure that it fully clicks into place.

$0-10 \mathrm{~V}$ AND 1-10V

AL Drivers have a single analog input port 0-10V or 1-10V (current sink or source - see page 2) port that uses a 2-pin terminal block (supplied). For best results use shielded cables and connect as follows:

Insert the terminal block into the ANALOG

IN socket and ensure that it fully clicks into place.

OUTPUT PORT CONNECTIONS

AL Drivers have multiple constant voltage output ports, each of which uses 6-pin terminal block. The output ports use a common anode supply and there are two V+ contacts to assist with multiple fixture connections (the two contacts are joined internally so either or both can be used, as required).
Each port can support a maximum of 6.6A.
However, the maximum overall load across all ports must not exceed the following:

- AL Driver 200

8A

- AL Driver 400
16.5A
- AL Driver 800 33A
- AL Driver 800 33A

Note: A maximum cable size of 14 AWG ($2.081 \mathrm{~mm}^{2}$) can be used directly within the terminal block contacts. the terminal block contacts.

OUTPUT PORT CONTROL

The manner in which the various ports are grouped and operate is determined primarily by three important menu settings:

- MODE - determines the control method: DMX, DALI, 0-10V, etc. (page 18)
- CHANNEL - determines how the ports are assigned to the control method (pages 19 to 21)
- LOAD - determines the functions of each contact on every port (pages 19 to 21):

LOAD $=$ RGB	V $+\quad$ V+ Red Green Blue
LOAD $=$ RGBW	V $+\quad$ V + Red Green Blue White
LOAD $=$ Ai Dim	V+ V+ W1 W2 W3 W4
LOAD $=$ DW	V+ V+ Warm Cold Warm Cold
LOAD $=$ White	V+ V+ White White White White

Notes:

- Whichever LOAD-type is chosen, that setting will be applied globally to all ports. For example, it is not possible to choose Ai Dim operation for some ports and RGBW for others.
- The maximum 6.6A load limit for each port (and the maximum overall load for the whole device) must not be exceeded.
- In Ai Dim mode, the W1 to W4 connections align with the four marked wires of products such as Ai Flex.

OUTPUT PORT CONNECTION CABLES

The connection cables (not supplied) used to link the output ports to the fixtures should follow these guidelines (based on a maximum load of 6.6A):

Conductor size

- 18 AWG ($0.823 \mathrm{~mm}^{2}$) Up to 40 feet (12 m)
- 14 AWG ($2.081 \mathrm{~mm}^{2}$)

Up to 100 feet (30.4 m)
In all cases, ensure the voltage drop at the fixture end is no greater than 9\% of the original supply.

OUTPUT PORT FUSES

Each output port has a dedicated fuse to protect against short circuits and excessive loading. Use a flat blade screwdriver to push in and then twist counter-clockwise to release the fuse carrier.

INPUT POWER WIRING

The fixed power cord is roughly 4.4 feet, 1.35 m in length and is supplied as standard with US color coding and bare tails. For international installations, wire according to local codes.

Power cord colors

AL Driver 200, 400 and 800 models operate from supplies in the range: $100-277 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ Power consumption:

- AL Driver 200: 220W maximum
- AL Driver 400: 480W maximum
- AL Driver 800: 960W maximum

IN-RUSH CURRENT

The AL Driver 200, 400 and 800 models use switched mode power supplies which exhibit a trait known as 'in-rush current' when they are first powered on. This is caused by the various capacitive components initially topping themselves up with power. The in-rush current period lasts only milliseconds, however, if you are using multiple units on a single supply, ensure that the breakers used are rated to support inrush currents without tripping during startup.

CONNECTOR COVER

Each AL Driver unit is supplied with a transparent plastic cover to provide protection to the control inputs and port output connections.

TO FIT THE CONNECTOR COVER
1 Insert the angled upper lip of the cover into the slot at the top of the connector panel.

2 Lower the lower edge of the cover down so that the two holes align with the two clips located on the driver side walls.

3 Carefully clip the cover into place.
TO REMOVE THE CONNECTOR COVER
1 Carefully release the two clips and swing the lower edge of the cover up.

2 Disengage the upper lip of the cover from the AL Driver frame.

AL DRIVER 1

The AL Driver 1 module controls one circuit of single color LED tape, either under control of an external DMX digital signal, an external 0-10V/1-10V analog signal or using standalone intensity mixes. The AL Driver 1 is a constant voltage device and can operate from DC power supplies ranging from 6 to 24VDC (5A maximum); the controlled LED tape must be compatible with the voltage level being fed to AL Driver 1.

CONNECTIONS

Note: The DMX and analog (0-10V/1-10V) inputs are both active when switch 10 is set to ON , so it is important that only one set of inputs are connected at any one time: either DMX OR analog.

CONFIGURATION

The AL Driver 1 is configured using its 12 way switch block. The two main modes of operation are external control or standalone dimming.

EXTERNAL CONTROL

To select external control, ensure that switch 10 is ON. Note: The DMX and analog (0-10V/110 V) inputs are both active in this mode, so it is important that only one set of inputs are connected at any one time: either DMX OR analog. When DMX is used, switches 1 to 9 are then used to set the DMX start address. Switches 1 to 9 are 'weighted' with a value as shown here:

Note: Numerous apps are available to assist you with configuring the correct switch combinations for a given DMX address.

0-10V / 1-10V SELECTION

Using switch 11, you can choose between 0-10V current source (active) or 1-10V current sink (passive) control inputs. The primary difference between the two schemes lies with where the control voltage should be generated: Current source requires the controlling device to provide (source) the control voltage; whereas Current sink mandates that the controlled fixture must provide the voltage.

OPTIONAL CURVE SMOOTHING

When switch 12 is set to ON, additional intermediate steps are added to the response curve to help eradicate any visible stepping between the usual 256 (8bit) dimming levels.

STANDALONE DIMMING

To select standalone dimming, ensure that switch 10 is OFF. Switches 1 to 8 are then used to set the overall dimming level: 0 to 255 (100\%).

AL DRIVER 4

The AL Driver 4 module controls a single circuit of RGB or RGBW LED tape, either under control of an external DMX signal or using standalone color mixes or chase patterns. The AL Driver 4 is a constant voltage device and can operate from DC power supplies ranging from 12 to 24 VDC ; the controlled LED tape must be compatible with the voltage level being fed to AL Driver 4.
Note: AL Driver 4 is not able to provide the progressive dimming patterns required by Ai Dim products such as Ai Flex tape - use AL Driver 200, 400 or 800 for Ai Dim devices.

CONNECTIONS

OUTPUT TO LEDS
The module output uses a common anode.
Ensure that voltage rating of the LED device
to be connected matches that of the supply
voltage used by the module. You can use
either of the + terminals.

CONFIGURATION

The AL Driver 4 is configured using its 12 way switch block. The three modes of operation are external DMX control, standalone color mixing or standalone chases.

DMX CONTROL

To select DMX control, ensure that switch 10 is ON, while 11 and 12 are OFF. Switches 1 to 9 are then used to set the DMX start address.
Switches 1 to 9 are 'weighted' with a value as shown here:

Note: Numerous apps are available to assist you with configuring the correct switch combinations for a given DMX address.

STANDALONE COLOR MIXING

To select standalone color mixing, ensure that switch 11 is ON, while 10 and 12 are OFF. Switches 1 to 8 are then used to set the overall color mix. If both the 25% and 75% switches for any one color are set to ON, that
 color will be shown at 100\%:

STANDALONE CHASES

To select standalone chases, ensure that switch 12 is ON, while 10 and 11 are OFF. Switches 1 to 3 select the Fade time (0 to 100\%); switches 4 to 6 adjust the Speed (0 to 30s) and 7 to 9 select the Chase program (9 chases).

OPERATION (200/400/800)

AL Drivers begin operating as soon as power is applied, there are no power switches.

MENU NAVIGATION

Use the three control buttons to navigate around the menu and alter settings as necessary. The display has a backlight timeout and will go dark roughly 30 seconds after the last button press - tap any key to restore.
The exact options available within the menu will alter depending on the setting of the MODE option (see page
 18) in order to provide relevant options. The next four pages list the main menu items for each of the MODE settings.

MAIN MENU ITEMS (WHEN MODE SET TO DALI)

पणDE Determines the control method to be used. Options are: DMX512, 1-10V,

DALI

 $0-10 \mathrm{~V}, \mathrm{MANUAL}$ and AUTO. See page 18.Lणு Selects the nature of the LED loads that will be placed on the output ports:

RGE Options are RGB, RGBW, Ai Dim, WHITE and DW. See pages 19 to 21.

CHHHEL mमापाए
|
MDDESS
DUL
Determines how the output ports should be distributed between the chosen DALI address range. See pages 19 to 21.

Allows you to set the DALI start address. The total number of DALI channels required depends on a combination of the LOAD and CHANNEL settings. See page 22.

प|ETOH Displays the current internal firmware version.
$1 . \mathrm{Q}$

TEMF "MAS $2 \mathrm{Em} \quad$ during operation (in degrees Centigrade).

Displays the maximum internal temperature that the unit has encountered

TEIP $M T H$ Displays the minimum internal temperature that the unit has encountered . .f: during operation (in degrees Centigrade).

If the OK button is pressed, the logged maximum and minimum temperature levels are cleared.

TEIF: Displays the current internal temperature of the driver (in degrees En" Centigrade).

MAIN MENU ITEMS (WHEN MODE SET TO 0-10V OR 1-10V)

TUDE Determines the control method to be used. Options are: DMX512, DALI, E-ICU 1-10V, 0-10V, MANUAL and AUTO. See page 18.

LTD Selects the nature of the LED loads that will be placed on the output ports: WHITE Options are WHITE, Ai Dim and DW. See pages 19 to 21.

IHUT Displays the current status of the 0-10V (or 1-10V) input signal.
B, DU

प|ETOH Displays the current internal firmware version.
1.02

TETP , 1 HR (Displays the maximum internal temperature that the unit has encountered 20.

TEIF. MIH Displays the minimum internal temperature that the unit has encountered 9.0 m during operation (in degrees Centigrade).

TEY: If the OK button is pressed, the logged maximum and minimum
REETT temperature levels are cleared.

TEIP: ${ }^{2} \quad$ Displays the current internal temperature of the driver (in degrees $15, \mathrm{Em}$ Centigrade).

Note: In the 0-10V and 1-10V modes, all ports react in the same way to the single control input signal.

MAIN MENU ITEMS (WHEN MODE SET TO MANUAL)

MODE Determines the control method to be used. Other options are: DMX512, MHIUML DALI, 1-10V, 0-10V, and AUTO. See page 18.

Lणு Selects the nature of the LED loads that will be placed on the output ports:
FED Options are RGB, RGBW, Ai Dim, WHITE and DW. See page 22.

PED Determines the intensity of the RED channel*. See page 23.
25
©EET Determines the intensity of the GREEN channel*. See page 23.
25

ELIE Determines the intensity of the BLUE channel*. See page 23. 25

WHITE Determines the intensity of the WHITE channel*. See page 23. 25

U区STOL Displays the current internal firmware version.
$1 . \mathrm{CZ}$
$T E I P$, MAS Displays the maximum internal temperature that the unit has encountered 20. BC during operation (in degrees Centigrade).

TEIP: MTH Displays the minimum internal temperature that the unit has encountered . 9 during operation (in degrees Centigrade).

TEIP: If the OK button is pressed, the logged maximum and minimum RESET? temperature levels are cleared.
$T E=$ Displays the current internal temperature of the driver (in degrees
15.0 Centigrade).

* When alternative LOAD settings are chosen, the available intensity options will change accordingly.

CHOOSING A CONTROL MODE

AL Drivers have six control modes:

- DMX512 - Port output levels are determined by the signal received at the DMX/RDM IN connector.
- DALI - Port output levels are determined by the signal received at the DALI IN connector.
- 1-10V - Outputs (for all ports combined) are determined by the 1-10V signal received at the ANALOG IN connector.
- 0-10V - Outputs (for all ports combined) are determined by the 0-10V signal received at the ANALOG IN connector.
- MANUAL - Allows you to mix emitter intensities (for all ports combined) directly from the menu, independently of any external control input. See page 23.
- AUTO - Allows you to choose from ten pre-programmed chase routines (for all ports combined) directly from the menu, independently of any external control input. See page 23.
Note: The control mode and the DMX address can optionally be configured remotely using the RDM (Remote Device Management) protocol via a DMX connection.

TO CHOOSE A CONTROL MODE

1 In the menu display, ensure that the MODE option is showing.

- If $M O D E$ is not showing, first check that the character is not flashing in the corner of the display. If it is, press $\mathbf{O K}$ to return to the main menu level.
- Repeatedly press either the UP or DOWN buttons until the MODE option is displayed.

2 Press ENTER. The character should begin flashing in the lower right corner of the display.

3 Use the UP and DOWN buttons to change between the various mode types: DMX512, DALI, 1-10V, 0-10V, MANUAL and AUTO.
4 When the required mode is shown, press the $\boldsymbol{O} \boldsymbol{K}$ button to select it and return to the menu top level (the character will stop flashing).
5 You can now continue to choose the other options within the chosen mode type using the UP, DOWN and $\mathbf{O K}$ buttons.

AL DRIVER 200 - CHANNEL AND LOAD SETTINGS (DMX AND DALI)

When either the DMX or DALI modes are selected, you can determine how the four ports are grouped and applied to the control addresses using the CHANNEL setting. Together with the LOAD setting (which determines how the contacts of each port are used: RGB, RGBW, Ai Dim, etc.), these two key settings determine the total number of control addresses required.

CHANNEL: MOO

Combines all of the ports into a single set of addresses:

CHANNEL:	LOAD:	Total addresses
04/M00	RGBW	$\mathbf{4}$ addresses
03/M00	RGB	$\mathbf{3}$ addresses
01/M00	Ai Dim	$\mathbf{1}$ address
01/M00	White	$\mathbf{1}$ address
01/M00	DW	$\mathbf{1}$ address

CHANNEL: M01

Arranges the ports into two
groups of addresses:

CHANNEL:	LOAD:	Total addresses
08/M01	RGBW	$\mathbf{8}$ addresses
06/M01	RGB	$\mathbf{6}$ addresses
02/M01	Ai Dim	$\mathbf{2}$ addresses
02/M01	White	$\mathbf{2}$ addresses
02/M01	DW	$\mathbf{2}$ addresses

CHANNEL: M02

Treats all of the ports individually, requiring four sets of addresses:

CHANNEL:	LOAD:	Total addresses
16/M02	RGBW	$\mathbf{1 6}$ addresses
12/M02	RGB	$\mathbf{1 2}$ addresses
04/M02	Ai Dim	$\mathbf{4}$ addresses
04/M02	White	$\mathbf{4}$ addresses
04/M02	DW	$\mathbf{4}$ addresses

TO CHOOSE THE CHANNEL AND LOAD SETTINGS

1 Choose either the DMX512 or DALI menu options, as required. See page 18 for details.
2 Use the DOWN button to show the LOAD option and press the $\boldsymbol{O K}$ button to enter.
3 Use the UP and DOWN buttons to change between the various LOAD types: RGBW, RGB, Ai Dim, WHITE and DW. Press the $\mathbf{O K}$ button to select the one that matches your connected fixture type.
4 Use the DOWN button to show the CHANNEL option and press the $\boldsymbol{O K}$ button to enter.
5 Use the UP and DOWN buttons to change between the various CHANNEL groupings: $x x x / M 00, x x x / M 01$ and $x x x / M 02$. Where $x x x$ is the stated number of addresses that are required to control all of the ports.
6 Press the $\mathbf{O K}$ button to select the required grouping.
7 You also need to set a base address, see page 22.
Pages 26 to 28 show how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL and LOAD combination.

AL DRIVER 400 - CHANNEL AND LOAD SETTINGS (DMX AND DALI)

When either the DMX or DALI modes are selected, you can determine how the six ports are grouped and applied to the control addresses using the CHANNEL setting. Together with the LOAD setting (which determines how the contacts of each port are used: RGB, RGBW, Ai Dim, etc.), these two key settings determine the total number of control addresses required.

CHANNEL: M01

Arranges the ports into two groups of addresses:

1	2	3
4	5	6

CHANNEL:	LOAD:	Total addresses
08/M01	RGBW	$\mathbf{8}$ addresses
06/M01	RGB	$\mathbf{6}$ addresses
02/M01	Ai Dim	$\mathbf{2}$ addresses
02/M01	White	$\mathbf{2}$ addresses
02/M01	DW	$\mathbf{2}$ addresses

CHANNEL: M02

Creates pairs of ports, requiring three sets of addresses:

1	2	3
4	5	6

CHANNEL:	LOAD:	Total addresses
12/M02	RGBW	$\mathbf{1 2}$ addresses
09/M02	RGB	$\mathbf{9}$ addresses
03/M02	Ai Dim	$\mathbf{3}$ addresses
03/M02	White	$\mathbf{3}$ addresses
03/M02	DW	$\mathbf{3}$ addresses

CHANNEL: M03

Treats all of the ports individually, requiring six sets of addresses:

CHANNEL:	LOAD:	Total addresses
24/M03	RGBW	$\mathbf{2 4}$ addresses
18/M03	RGB	$\mathbf{1 8}$ addresses
06/M03	Ai Dim	$\mathbf{6}$ addresses
06/M03	White	$\mathbf{6}$ addresses
06/M03	DW	$\mathbf{6}$ addresses

TO CHOOSE THE CHANNEL AND LOAD SETTINGS

1 Choose either the DMX512 or DALI menu options, as required. See page 18 for details.
2 Use the DOWN button to show the LOAD option and press the $\boldsymbol{O K}$ button to enter.
3 Use the UP and DOWN buttons to change between the various LOAD types: RGBW, $R G B, A i \operatorname{Dim}$, WHITE and DW. Press the $\mathbf{O K}$ button to select the one that matches your connected fixture type.
4 Use the DOWN button to show the CHANNEL option and press the $\mathbf{O K}$ button to enter.
5 Use the UP and DOWN buttons to change between the various CHANNEL groupings: $x x x / M 0, x x x / M 1, x x x / M 2$ and $x x x / M 3$. Where xxx is the stated number of addresses that are required to control all of the ports.
6 Press the $\mathbf{O K}$ button to select the required channel grouping.
7 You also need to set a base address, see page 22.
Pages 29 to 31 show how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL and LOAD combination.

AL DRIVER 800 - CHANNEL AND LOAD SETTINGS (DMX AND DALI)

 When either the DMX or DALI modes are selected, you can determine how the ten ports are grouped and applied to the control addresses using the CHANNEL setting. Together with the LOAD setting (which determines how the contacts of each port are used: RGB, RGBW, Ai Dim, etc.), these two key settings determine the total number of control addresses required.
CHANNEL: MOO

Combines all of the ports into
a single set of addresses:

1	3	5
	\begin{tabular}{\|c	}
\hline		
\end{tabular}	\begin{tabular}{\|c	}
\hline		
\end{tabular}		
2	4	6
8	10	

CHANNEL:	LOAD:	Total addresses
04/M00	RGBW	$\mathbf{4}$ addresses
03/M00	RGB	$\mathbf{3}$ addresses
01/M00	Ai Dim	$\mathbf{1}$ address
01/M00	White	$\mathbf{1}$ address
01/M00	DW	$\mathbf{1}$ address

CHANNEL: M01

Arranges the ports into two
groups of addresses:
$\left.\begin{array}{|l|l|l|l|}\hline 1 & \boxed{3} & 5 & 7 \\ \hline & 9 \\ \hline 2 & 4 & 6 & 8\end{array}\right)$

CHANNEL:	LOAD:	Total addresses
08/M01	RGBW	$\mathbf{8}$ addresses
06/M01	RGB	$\mathbf{6}$ addresses
02/M01	Ai Dim	$\mathbf{2}$ addresses
02/M01	White	$\mathbf{2}$ addresses
02/M01	DW	$\mathbf{2}$ addresses

CHANNEL: M02

Creates pairs of ports, requiring
five sets of addresses:

1	3	5
	\begin{tabular}{\|c	}
\hline		
\end{tabular}		
2	4	6
	8	10

CHANNEL:	LOAD:	Total addresses
20/M02	RGBW	$\mathbf{2 0}$ addresses
15/M02	RGB	$\mathbf{1 5}$ addresses
05/M02	Ai Dim	$\mathbf{5}$ addresses
05/M02	White	$\mathbf{5}$ addresses
05/M02	DW	$\mathbf{5}$ addresses

CHANNEL: M03

Treats all of the ports individually, requiring ten sets of addresses:

CHANNEL:	LOAD:	Total addresses
40/M03	RGBW	$\mathbf{4 0}$ addresses
30/M03	RGB	$\mathbf{3 0}$ addresses
10/M03	Ai Dim	$\mathbf{1 0}$ addresses
10/M03	White	$\mathbf{1 0}$ addresses
10/M03	DW	$\mathbf{1 0}$ addresses

TO CHOOSE THE CHANNEL AND LOAD SETTINGS
1 Choose either the DMX512 or DALI menu options, as required. See page 18 for details.
2 Use the DOWN button to show the LOAD option and press the $\boldsymbol{O K}$ button to enter.
3 Use the UP and DOWN buttons to change between the various LOAD types: RGBW, $R G B$, Ai Dim, WHITE and DW. Press the $\boldsymbol{O K}$ button to select the one that matches your connected fixture type.
4 Use the DOWN button to show the CHANNEL option and press the $\boldsymbol{O} \boldsymbol{K}$ button to enter.
5 Use the UP and DOWN buttons to change between the various CHANNEL groupings: $x x x / M 0, x x x / M 1, x x x / M 2$ and $x x x / M 3$. Where $x x x$ is the stated number of addresses that are required to control all of the ports.
6 Press the $\mathbf{O K}$ button to select the required channel grouping.
7 You also need to set a base address, see page 22.
Pages 32 to 34 show how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL and LOAD combination.

CHOOSING A BASE ADDRESS (DMX AND DALI)

When DMX or DALI modes are chosen, you need to set a base address at which the AL Driver should begin applying its various output channels.

- DMX addresses run from 1 to 512
- DALI addresses run from 0 to 63

In either case you need to ensure that there is sufficient'head room' from the chosen base address to the final address that will be required, as determined by the LOAD and CHANNEL settings (see pages 19 to 21).

Note: The control mode and the DMX address for the AL Driver can optionally be configured remotely using the RDM (Remote Device Management) protocol via a DMX connection.

TO CHOOSE A BASE ADDRESS

1 Choose either the DMX512 or DALI menu options, as required. See page 18 for details.
2 Use the DOWN button to show the ADDRESS option and press the $\mathbf{O K}$ button to enter.
3 Use the UP and DOWN buttons to display the required base address and press the $\mathbf{O K}$ button to select it.

Pages 26 to 34 show you exactly how the channels of each port are distributed across the DMX or DALI addresses for each LOAD and CHANNEL combination.

CHOOSING THE LOAD TYPE (MANUAL AND AUTO MODES)

The Manual and Auto modes both allow you determine the port outputs directly from the control panel without need for external inputs. The options available to you will depend on the nature of the emitters that are connected and declared using the LOAD option (e.g. RGB, RGBW, Ai Dim, etc.).

TO CHOOSE THE LOAD TYPE

1 Choose either the MANUAL or AUTO menu options, as required. See page 18 for details.
2 Use the DOWN button to show the LOAD option and press the $\boldsymbol{O} \boldsymbol{K}$ button to enter.
3 Use the UP and DOWN buttons to change between the various LOAD types: $R G B$, RGBW, Ai Dim, WHITE or DW. Press the $\boldsymbol{O K}$ button to select the one that matches your connected fixture type.

SETTING A STATIC COLOR MIX (MANUAL MODE)

Manual mode allows you to create a static color mix across all ports of the AL Driver, independently of any external control input. The available mix options will alter depending on the connected fixture type and the setting of the LOAD option within the Manual section.

TO SET A STATIC COLOR MIX

1 Choose the MANUAL mode. See page 18 for details.
2 Use the DOWN button to show the LOAD option and press the $\boldsymbol{O} \boldsymbol{K}$ button to enter.
3 Use the UP and DOWN buttons to choose the setting appropriate to the connected fixture type: RGB, RGBW, Ai Dim, WHITE or DW. Press the $\boldsymbol{O} \boldsymbol{K}$ button to fix.

4 Use the UP and DOWN buttons to show your first color option (i.e. RED, GREEN, BLUE, WHITE, WARM or COOL - depending on the LOAD setting) and press the $\mathbf{O K}$ button to enter.
5 Use the UP and DOWN buttons to alter the intensity level between 0 and 255 (the emitters of the selected color will respond immediately) and press the $\boldsymbol{O} \boldsymbol{K}$ button to set the required level.
6 Repeat steps 3 and 4 for the other colors until the required overall mix is achieved.
Note: The AL Driver will store your settings within non-volatile memory so that your chosen color mix will resume whenever the unit is re-powered.

CHOOSING A CHASE PATTERN (AUTO MODE)

Auto mode allows you to choose from ten different pre-programmed color chase patterns, independently of any external control input. The available chase programs are labeled 00 to 10 and there is also an AUTO setting which will randomly change between the ten patterns. The nature of the ten chase patterns will alter depending on the connected fixture type and the setting of the LOAD option within the AUTO section.

TO SET A CHASE PATTERN

1 Choose the AUTO mode. See page 18 for details.
2 Use the DOWN button to show the LOAD option and press the $\mathbf{O K}$ button to enter.
3 Use the UP and DOWN buttons to choose the setting appropriate to the connected fixture type: RGB, RGBW, Ai Dim, WHITE or DW. Press the $\boldsymbol{O} \boldsymbol{K}$ button to fix.
4 Use the DOWN button to show the PATTERN option and press the $\mathbf{O K}$ button to enter.
5 Use the UP and DOWN buttons to choose the required chase pattern (between 01 and 10 plus AUTO) and press the $\mathbf{O K}$ button to fix.
6 Use the DOWN button to show the SPEED option and press the $\mathbf{O K}$ button to enter.
7 Use the UP and DOWN buttons to choose the appropriate chase speed and press the $\mathbf{O K}$ button to fix.

8 Use the DOWN button to show the FADETIME (crossfade) option and press the $\boldsymbol{O K}$ button to enter.

9 Use the UP and DOWN buttons to choose the appropriate cross fade speed and press the $\mathbf{O K}$ button to fix.

Note: The AL Driver will store your settings within non-volatile memory so that your chosen chase pattern will resume whenever the unit is re-powered.

CONFIGURATION VIA RD

The use of RDM (Remote Device Management) with AL Driver 200, 400 and 800 models is optional and allows the following tasks to be completed remotely without having to visit each fixture:

- Configure the DMX address,
- Set the control mode.

Various third party DMX/RDM tools are available; Acclaim Lighting recommends the XMT-350.

CONFIGURING THE DIX ADDRESS VIA RDA

While it is not possible to alter the Channel groupings or Load types remotely via RDM, it is possible to change the DMX base address.

TO CONFIGURE THE DM ADDRESS USING THE XMT-350

1 Connect the XMT-350 to the DMX input line of the AL Driver installation.
2 On the XMT-350, press the MODE button, then use the arrow buttons to highlight the RDM function and press the \qquad button to select. The XMT-350 will search for RDM devices and after a short while the XMT-350 will display a list of all located devices:

MAIN $/$ PATCH	OPTIONS
AL DRIVER 200	$003 / 003$
AL DRIVER 400	001
AL DRIVER 800	005

The driver highlighted in the list should show output from its emitters to identify itself.

3 On the XMT-350, press the right arrow button to change to the PATCH tab:

Note: DMX addresses shown in brackets, e.g. (001), have been temporarily assigned by the XMT-350, but are not yet stored within the fixtures).

4 If necessary, use the up/down buttons to choose an alternative fixture.
5 Press the $\boldsymbol{\checkmark}$ button to set the address for the currently highlighted fixture:

6 Use the up/down buttons to set the required DMX address and then press the \checkmark button to store it within the fixture.
7 The highlight will automatically move to the next fixture so that you can address it. Repeat steps 4 to 6 until all fixtures are addressed.

SETTING THE CONTROL MODE VIA RDM
Using RDM you can change the control mode.

TO SET THE CONTROL MODE USING THE XMT-350

1 Connect the XMT-350 to the DMX input line of the AL Driver installation.
2 On the XMT-350, press the MODE button, then use the arrow buttons to highlight the RDM function and press the $\boldsymbol{\checkmark}$ button to select. The XMT-350 will search for RDM devices and after a short while the XMT-350 will display a list of all located fixtures. The driver highlighted in the list should show output from its emitters to identify itself.
3 If necessary, use the up/down buttons to highlight an alternative fixture.
4 Press the $\boldsymbol{\checkmark}$ button to view details for the chosen fixture and then use the down button to highlight the DMX PERSONALITY entry:

| AL DRIVER 200 | |
| :--- | ---: | ---: |
| LLABEL: | AL DRIVER 200 |
| PMODEL: | AL DRIVER 200 |
| MAN: | ACCLAIM LIGHTING |
| DMX START ADDRESS: | $\mathbf{0 0 1}$ |
| DMX PERSONALITY: | DMX512 |
| DMX SLOTS: | 4 |

5 Press the \checkmark button to view the options:

AL DRIVER 200	004 CH
O001:	DMX512
$002:$	AUTO
003:	MANUAL
$004:$	$0-10 \mathrm{~V}$
$005:$	$1-10 \mathrm{~V}$
006:	DALI

6 Highlight the required option and press the \checkmark button.
7 Press the \mathbf{x} button to return to the previous screen.

AL DRIVER 200 - DMX/DALI ADDRESS LAYOUT (LOAD: RGBW)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to RGBW. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Address	CHANNEL: 016/M02	CHANNEL: 008/M01	CHANNEL: 004/M00
1	Port 1 - Red	Ports 1 \& 2: Red	All ports: Red
2	Port 1 - Green	Ports $\mathbf{1}$ \& 2: Green	All ports: Green
3	Port 1 - Blue	Ports $\mathbf{1}$ \& 2: Blue	All ports: Blue
4	Port 1 -White	Ports 1 \& 2: White	All ports: White
5	Port 2 - Red	Ports $\mathbf{3} \& \mathbf{4}$: Red	
6	Port 2 -Green	Ports $\mathbf{3}$ \& 4: Green	
7	Port $\mathbf{2}$ - Blue	Ports $\mathbf{3}$ \& 4: Blue	
8	Port 2 -White	Ports $\mathbf{3}$ \& 4: White	
9	Port $\mathbf{3}$ - Red		
10	Port 3 -Green		
11	Port 3 - Blue		
12	Port 3 -White		
13	Port 4 - Red		
14	Port 4 - Green		
15	Port 4 - Blue		
16	Port 4 -White		

AL DRIVER 200 - DMX/DALI ADDRESS LAYOUT (LOAD: RGB)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to RGB. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Address	CHANNEL: 012/M02	CHANNEL: 006/M01	CHANNEL: 003/M00
1	Port 1 - Red	Ports $\mathbf{1}$ \& 2: Red	All ports: Red
2	Port 1 - Green	Ports $\mathbf{1}$ \& 2: Green	All ports: Green
3	Port 1 - Blue	Ports $\mathbf{1}$ \& 2: Blue	All ports: Blue
4	Port $\mathbf{2}$ - Red	Ports $\mathbf{3}$ \& 4: Red	
5	Port 2 - Green	Ports $\mathbf{3}$ \& 4: Green	
6	Port $\mathbf{2}$ - Blue	Ports $\mathbf{3}$ \& 4: Blue	
7	Port 3 - Red		
8	Port 3 - Green		
9	Port 3 - Blue		
10	Port 4 - Red		
11	Port 4 - Green		
12	Port 4 - Blue		

AL DRIVER 200 - DMX/DALI ADDRESS LAYOUT (FOR LOAD: AI DIM, WHITE \& DW)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to Ai Dim, WHITE or DW. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Notes:

- In Ai Dim mode, the Red, Green, Blue and White contacts equate to the W1, W2, W3 and W4 emitters on the Ai Dim product (such as Ai Flex), respectively.
- In WHITE mode, for each port, the White outputs are placed on all of the contacts (Red, Green, Blue and White). Together with the dual V+ connections, this allows you to distribute multiple fixtures between the contacts, if required.
- In DW mode, the Red and Blue contacts equate to the Warm emitters while the Green and White contacts drive the Cold emitters.
- In all cases, the maximum port load of 6.6A and total maximum overall load of 8 A for the whole AL Driver 200 must be maintained.

	CHANNEL:	CHANNEL:	CHANNEL:
Address	004/M02	002/M01:	001/M00
1	Port $\mathbf{1}$ - Intensity	Ports $\mathbf{1}$ \& 2: Intensity	All ports: Intensity
2	Port $\mathbf{2}$ - Intensity	Ports $\mathbf{3}$ \& 4: Intensity	
3	Port $\mathbf{3}$ - Intensity		
4	Port 4 - Intensity		

AL DRIVER 400 - DMX/DALI ADDRESS LAYOUT (LOAD: RGBW)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to RGBW. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Address	CHANNEL: 024/М03	CHANNEL: 012/M02	CHANNEL: 008/M01	CHANNEL: 004/M00
1	Port 1 - Red	Ports 1 \& 2: Red	Ports 1 to 3: Red	All ports: Red
2	Port 1 - Green	Ports $\mathbf{1}$ \& 2: Green	Ports 1 to 3: Green	All ports: Green
3	Port 1 - Blue	Ports $\mathbf{1}$ \& 2: Blue	Ports 1 to 3: Blue	All ports: Blue
4	Port 1 -White	Ports $\mathbf{1}$ \& 2: White	Ports 1 to $\mathbf{3}$: White	All ports: White
5	Port 2 - Red	Ports $\mathbf{3}$ \& 4: Red	Ports 4 to 6: Red	
6	Port $\mathbf{2}$ - Green	Ports $\mathbf{3}$ \& 4: Green	Ports 4 to 6: Green	
7	Port 2 - Blue	Ports $\mathbf{3}$ \& 4: Blue	Ports 4 to 6: Blue	
8	Port 2 -White	Ports $\mathbf{3}$ \& 4: White	Ports 4 to 6: White	
9	Port 3 - Red	Ports $\mathbf{5}$ \& 6: Red		
10	Port $\mathbf{3}$ - Green	Ports 5 \& 6: Green		
11	Port 3 - Blue	Ports 5 \& 6: Blue		
12	Port 3 - White	Ports 5 \& 6: White		
13	Port 4 - Red			
14	Port 4 - Green			
15	Port 4-Blue			
16	Port 4-White			
17	Port 5 - Red			
18	Port 5 - Green			
19	Port 5 - Blue			
20	Port 5 -White			
21	Port 6 - Red			
22	Port 6-Green			
23	Port 6 - Blue			
24	Port 6 - White			

AL DRIVER 400 - DMX/DALI ADDRESS LAYOUT (LOAD: RGB)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to RGB. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Address	CHANNEL: 018/M03	CHANNEL: 009/M02	CHANNEL: 006/M01	CHANNEL: 003/M00
1	Port 1 - Red	Ports 1 \& 2: Red	Ports 1 to 3: Red	All ports: Red
2	Port 1 - Green	Ports 1 \& 2: Green	Ports 1 to 3: Green	All ports: Green
3	Port 1 - Blue	Ports $\mathbf{1}$ \& 2: Blue	Ports 1 to 3: Blue	All ports: Blue
4	Port 2 -Red	Ports $\mathbf{3} \& \mathbf{4}$: Red	Ports 4 to 6: Red	
5	Port 2 -Green	Ports $\mathbf{3}$ \& 4: Green	Ports 4 to 6: Green	
6	Port 2 - Blue	Ports $\mathbf{3}$ \& 4: Blue	Ports 4 to 6: Blue	
7	Port $\mathbf{3}$ - Red	Ports $\mathbf{5}$ \& 6: Red		
8	Port $\mathbf{3}$-Green	Ports $\mathbf{5}$ \& 6: Green		
9	Port $\mathbf{3}$ - Blue	Ports 5 \& 6: Blue		
10	Port 4 - Red			
11	Port 4 - Green			
12	Port 4 - Blue			
13	Port 5 - Red			
14	Port 5 -Green			
15	Port 5 - Blue			
16	Port 6 - Red			
17	Port 6-Green			
18	Port 6 - Blue			

AL DRIVER 400 - DMX/DALI ADDRESS LAYOUT (FOR LOAD: AI DIM, WHITE \& DW)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to Ai Dim, WHITE or DW. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Notes:

- In Ai Dim mode, the Red, Green, Blue and White contacts equate to the W1, W2, W3 and W4 emitters on the Ai Dim product (such as Ai Flex), respectively.
- In WHITE mode, for each port, the White outputs are placed on all of the contacts (Red, Green, Blue and White). Together with the dual V+ connections, this allows you to distribute multiple fixtures between the contacts, if required.
- In DW mode, the Red and Blue contacts equate to the Warm emitters while the Green and White contacts drive the Cold emitters.
- In all cases, the maximum port load of 6.6A and total maximum overall load of 16.5 A for the whole AL Driver 400 must be maintained.

Address	CHANNEL: 006/M03	CHANNEL: 003/M02	CHANNEL: 002/M01	CHANNEL: 001/M00
1	Port 1 - Intensity	Ports $\mathbf{1}$ \& 2: Intensity	Ports 1 to 3: Intensity	All ports: Intensity
2	Port 2 - Intensity	Ports $\mathbf{3}$ \& 4: Intensity	Ports 4 to 6: Intensity	
3	Port 3 - Intensity	Ports $\mathbf{5}$ \& 6: Intensity		
4	Port 4 - Intensity			
5	Port 5 - Intensity			
6	Port 6 - Intensity			

AL DRIVER 800 - DMX/DALI ADDRESS LAYOUT (LOAD: RGBW)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to RGBW. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Address	CHANNEL: 040/М03	CHANNEL: 020/M02	CHANNEL: 008/M01	CHANNEL: 004/M00
1	Port 1 - Red	Ports 1 \& 2: Red	Ports 1 to 5: Red	All ports: Red
2	Port 1 - Green	Ports $\mathbf{1}$ \& 2: Green	Ports 1 to 5: Green	All ports: Green
3	Port 1 - Blue	Ports $\mathbf{1}$ \& 2: Blue	Ports 1 to 5: Blue	All ports: Blue
4	Port 1 - White	Ports 1 \& 2: White	Ports 1 to 5: White	All ports: White
5	Port $\mathbf{2}$ - Red	Ports $\mathbf{3}$ \& 4: Red	Ports 6 to 10: Red	
6	Port $\mathbf{2}$ - Green	Ports $\mathbf{3}$ \& 4: Green	Ports 6 to 10: Green	
7	Port $\mathbf{2}$ - Blue	Ports $\mathbf{3}$ \& 4: Blue	Ports 6 to 10: Blue	
8	Port $\mathbf{2}$ - White	Ports $\mathbf{3}$ \& 4: White	Ports 6 to 10: White	
9	Port $\mathbf{3}$ - Red	Ports $\mathbf{5}$ \& 6: Red		
10	Port $\mathbf{3}$ - Green	Ports 5 \& 6: Green		
11	Port 3 - Blue	Ports 5 \& 6: Blue		
12	Port $\mathbf{3}$ - White	Ports 5 \& 6: White		
13	Port 4 - Red	Ports $\mathbf{7}$ \& 8: Red		
14	Port 4 - Green	Ports 7 \& 8: Green		
15	Port 4 - Blue	Ports 7 \& 8: Blue		
16	Port 4 - White	Ports $\mathbf{7}$ \& 8: White		
17	Port 5 - Red	Ports 9 \& 10: Red		
18	Port 5 - Green	Ports 9 \& 10: Green		
19	Port 5 - Blue	Ports 9 \& 10: Blue		
20	Port 5 - White	Ports 9 \& 10: White		
21	Port 6 - Red			
22	Port 6 - Green			
23	Port 6 - Blue			
24	Port 6 - White			
25	Port 7 - Red			
26	Port 7 - Green			
27	Port 7 - Blue			
28	Port 7 - White			
29	Port 8 - Red			
30	Port 8 - Green			
31	Port 8 - Blue			
-	-			
39	Port 10 - Blue			
40	Port 10 - White			

AL DRIVER 800 - DMX/DALI ADDRESS LAYOUT (LOAD: RGB)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to RGB. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Address	CHANNEL: 030/M03	CHANNEL: 015/M02	CHANNEL: 006/M01	CHANNEL: 003/M00
1	Port 1 - Red	Ports 1 \& 2: Red	Ports $\mathbf{1}$ to 5: Red	All ports: Red
2	Port 1 - Green	Ports 1 \& 2: Green	Ports 1 to 5: Green	All ports: Green
3	Port 1 - Blue	Ports $\mathbf{1}$ \& 2: Blue	Ports 1 to 5: Blue	All ports: Blue
4	Port 2 -Red	Ports $\mathbf{3}$ \& 4: Red	Ports 6 to 10: Red	
5	Port 2 -Green	Ports $\mathbf{3}$ \& 4: Green	Ports 6 to 10: Green	
6	Port 2 - Blue	Ports $\mathbf{3}$ \& 4: Blue	Ports 6 to 10: Blue	
7	Port 3 -Red	Ports $\mathbf{5}$ \& 6: Red		
8	Port 3 -Green	Ports 5 \& 6: Green		
9	Port 3 - Blue	Ports 5 \& 6: Blue		
10	Port 4 - Red	Ports $\mathbf{7}$ \& 8: Red		
11	Port 4 - Green	Ports 7 \& 8: Green		
12	Port 4 - Blue	Ports $\mathbf{7}$ \& 8: Blue		
13	Port 5 -Red	Ports 9 \& 10: Red		
14	Port 5 -Green	Ports $\mathbf{9}$ \& 10: Green		
15	Port 5 - Blue	Ports 9 \& 10: Blue		
16	Port 6 - Red			
17	Port 6-Green			
18	Port 6 - Blue			
19	Port 7 - Red			
20	Port 7 - Green			
21	Port 7 - Blue			
22	Port 8 - Red			
23	Port 8 -Green			
24	Port 8 - Blue			
25	Port 9 - Red			
26	Port 9 - Green			
27	Port 9 - Blue			
28	Port 10 - Red			
29	Port 10 - Green			
30	Port 10 - Blue			

AL DRIVER 800 - DMX/DALI ADDRESS LAYOUT (FOR LOAD: AI DIM, WHITE \& DW)

This chart shows how the channels of each port are distributed across the DMX or DALI addresses for each CHANNEL setting when the LOAD is set to Ai Dim, WHITE or DW. The first port(s) (shown in the table below against address 1) will be placed at the base address determined by the DMX or DALI menu options (see page 22). The remaining ports will be placed at successive DMX/DALI addresses.

Notes:

- In Ai Dim mode, the Red, Green, Blue and White contacts equate to the W1, W2, W3 and W4 emitters on the Ai Dim product (such as Ai Flex), respectively.
- In WHITE mode, for each port, the White outputs are placed on all of the contacts (Red, Green, Blue and White). Together with the dual V+ connections, this allows you to distribute multiple fixtures between the contacts, if required.
- In DW mode, the Red and Blue contacts equate to the Warm emitters while the Green and White contacts drive the Cold emitters.
- In all cases, the maximum port load of 6.6A and total maximum overall load of 33A for the whole AL Driver 800 must be maintained.

	CHANNEL:	CHANNEL:	CHANNEL:	CHANNEL:
Address	010/M03	005/M02	002/M01	001/M00
1	Port $\mathbf{1}$ - Intensity	Ports $\mathbf{1}$ \& 2: Intensity	Ports $\mathbf{1}$ to $\mathbf{5}$: Intensity	All ports: Intensity
2	Port $\mathbf{2}$ - Intensity	Ports $\mathbf{3}$ \& 4: Intensity	Ports $\mathbf{6}$ to $\mathbf{1 0}$: Intensity	
3	Port $\mathbf{3}$ - Intensity	Ports $\mathbf{5}$ \& 6: Intensity		
4	Port $\mathbf{4}$ - Intensity	Ports $\mathbf{7}$ \& 8: Intensity		
5	Port $\mathbf{5}$ - Intensity	Ports $\mathbf{9} \& \mathbf{1 0}$: Intensity		
6	Port $\mathbf{6}$ - Intensity			
7	Port $\mathbf{7}$ - Intensity			
8	Port $\mathbf{8}$ - Intensity			
9	Port $\mathbf{9}$ - Intensity			
10	Port $\mathbf{1 0}$ - Intensity			

FURTHER INFORMATION

AL DRIVER 1 AND 4 - SPECIFICATIONS

Control input protocols
Control output protocol
Input voltage/current

Output voltage
Operating temperature
Housing
IP rating
Certifications

DMX (or 0-10V/1-10V - AL Driver 1 only)
Pulse width modulation (PWM)
AL Driver 1: 6 to 24VDC (5A maximum)
AL Driver 4: 12VDC (8A max.) to 24VDC (4A max.)
As per input voltage
$14^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Polycarbonate
IP20, indoor dry location

AL DRIVER 200, 400 AND 800 - SPECIFICATIONS

Control input protocols
Control output protocol
Input voltage
Input power consumption

Output voltage
Output current (per port)
Output current (overall)

Output ports
Operating temperature
Housing
IP rating
Certifications

DMX (RDM), DALI, 1-10V (sink) or 0-10V (source)
Pulse width modulation (PWM)
100 to $277 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$ - auto sensing
AL Driver 200: 220W maximum
AL Driver 400: 480W maximum
AL Driver 800: 960W maximum
24VDC
6.6A maximum

AL Driver 200: 8A maximum
AL Driver 400: 16.5A maximum
AL Driver 800: 33A maximum
4 to 10 (model specific)
$14^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$
Black powder-coated steel
IP22, indoor dry location

AL DRIVER 1 - DIMENSIONS

Weight: 0.1 lbs (45g)

AL DRIVER 4 - DIMENSIONS

Weight: $0.1 \mathrm{lbs}(45 \mathrm{~g})$

Weight: $3.96 \mathrm{lbs}(1.8 \mathrm{~kg})$

AL DRIVER 400 - DIMENSIONS

Weight: 8.4 lbs (3.8kg)

Weight: $14.4 \mathrm{lbs}(6.5 \mathrm{~kg})$

LIMITED PRODUCT WARRANTY

A. Acclaim Lighting ${ }^{\text {TM }}$ hereby warrants, to the original purchaser, Acclaim Lighting finished products to be free of manufacturing defects in material and workmanship for a standard period of:

- Fixtures:
- Drivers, power supplies and accessories:
- Flex Products:
- Controllers:

5 Years (1,825 days) from the date of purchase.
5 Years (1,825 days) from the date of purchase.
3 Years (1,095 days) from the date of purchase.
2 Years (730 days) from the date of purchase.

It is the owner's responsibility to establish the date and place of purchase and warranty terms by acceptable evidence, at the time service is sought.
B. For warranty service, send the product only to the Acclaim factory. All shipping charges must be pre-paid. If the requested repairs or service (including parts replacement) are within the terms of this warranty, Acclaim Lighting will pay return shipping charges only to a designated point within the United States. If the entire instrument is sent, it must be shipped in its original package. No accessories should be shipped with the product. If any accessories are shipped with the product, Acclaim Lighting shall have no liability whatsoever for loss of or damage to any such accessories, nor for the safe return there of. Acclaim reserves the right to replace the item with same or similar product at its discretion.
C. This warranty is void if the serial number has been altered or removed; if the product is modified in any manner which Acclaim concludes, after inspection, affects the reliability of the product; if the product has been repaired or serviced by anyone other than the Acclaim Lighting factory unless prior written authorization was issued to purchaser by Acclaim Lighting; if the product is damaged because not properly maintained as set forth in the instruction manual.
D. This is not a service contract, and this warranty does not include maintenance, cleaning or periodic check-up nor do we guarantee as part of this warranty any lumen performance during period. Parts not covered by this warranty include: fuses, external power supplies, third party items not manufactures by Acclaim lighting. During the period specified above, Acclaim Lighting will replace defective parts at its expense, and will absorb all expenses for warranty service and repair labor by reason of defects in material or workmanship. The sole responsibility of Acclaim Lighting under this warranty shall be limited to the repair of the product, or replacement thereof, including parts, at the sole discretion of Acclaim Lighting. At no time will installation or re-installation or products labor or liability costs will be assumed by Acclaim Lighting. All products covered by this warranty were manufactured after January 1, 2012, and bear identifying serial number marks to that effect.
E. Acclaim Lighting reserves the right to make changes in design and/or improvements upon its products without any obligation to include these changes in any products theretofore manufactured No warranty, whether expressed or implied, is given or made with respect to any accessory supplied with products describe above. Except to the extent prohibited by applicable law, all implied warranties made by Acclaim Lighting in connection with this product, including warranties of merchantability or fitness, are limited in duration to the warranty period set forth above. And no warranties, whether expressed or implied, including warranties of merchantability or fitness, shall apply to this product after said period has expired.
F. Marine or extreme weather location applications using Acclaim lighting products are subject to a 2 year limited warranty and Acclaim must be notified prior to delivery of units for such applications so that preventative treatment can be made to the products to ensure proper performance and product life with a special marine code coating / sealing process at an additional cost.
G. The consumer's and or dealer's sole remedy shall be such repair or replacement as is expressly provide above; and under no circumstances shall Acclaim Lighting be liable for any loss or damage, direct or consequential, arising out of the use of, or inability to use, this product. This warranty is the only written warranty applicable to Acclaim Lighting products and supersedes all prior warranties and written descriptions of warranty terms and conditions heretofore published.

