
Pharos Designer User Manual

v2.7

2.7.0 23/08/2019 Letter © 2004-2019 Pharos Architectural Controls Limited. All rights reserved.

Pharos Designer User Manual

Contents

Contents 2
Welcome 7
New in v2.7 8
Introduction 10
Modes Overview 11
User Interface 13

Multiple Instances 15
Keyboard Shortcuts 16
System Requirements 21

Pharos Hardware Requirements 21
Computer System Requirements 21

Hardware Overview 22
Controllers 22
VLC+ 23
Remote Devices 23

Hardware Setup 25
LPC 1/2/4 25
LPC X, VLC, VLC+ 25
TPC 26
TPS 26
Remote Devices 26

Port Specifications 27
TPC Learning Infrared Receiver 31
BPS Learning Infrared Receiver 32
TPS Learning Infrared Receiver 34
Project Overview 35
New Project Wizard 36

Quick Start 36
Custom 36

Project Properties 38
Project Properties 38

Project Features 41
Protocols 41
Trigger 42
Devices 42
Editors 42

Web Interface 43
Custom Interface Theme 43
Custom Certificate 44
CustomWeb Interface 44
Custom Command Line Parser 44
Web Interface Access 44

Custom Properties 45
About 46
Reports 47
Layouts and Instances 51

Default Layouts 51
Instances 53
VLC/ VLC+ Layouts 54

- 2 -

Contents

Adding and Organising Fixtures 55
Selecting fixtures 67

Browser 68
Layout 69
Groups 70

Customising Fixtures 72
Fixture Alias 72
custom Fixtures 72
Fixture Templates 72

Pixel Matrix Editor 75
Composition Editor 78
Media Presets 82
Patch 85
DALI 96
Scene 102
Direct Colour Control 106
Working with Timelines 107
Timeline Properties 114

Working with Real Time 115
Working with Timecode 116
Working with Audio 117
Changing the Timeline and Preset Defaults 118

Working with Presets 119
Preset Types and Properties 124
Timing, Transitions & Precedent 140
Timeline Audio 144

Managing Timeline Audio 144
Timeline Audio Properties 144

Interface Overview 146
Working with Interfaces 147
Working with Pages 151
Working with Controls 155
Page Navigation 166
Built-In Themes 169
Dark Theme 170
Light Theme 175
Aurora Theme 180
City Theme 187
Lite Theme 192
Theme Editor 196
Trigger Overview 200
Triggers 205
Conditions 217
Actions 223
Variables 233
IO Modules 242

IOModule Instances 242
Examples 244
Simulate 248
Simulation Audio 251
Network Overview 252
Controller Connection 254
Device Association 257

- 3 -

Pharos Designer User Manual

Device Configuration 260
Device Properties 264
Controller protocols 266
Controller Interfaces 269
Remote Devices 272
Upload 276
Cloud Association 278
Default Web Interface 280
Custom Web Interface 291

JavaScript Query Library 291
Examples 291

Command line 292
.htaccess Files 294

ExampleWeb Interface Structure 294
Files 294

Main Menu Tools Overview 296
Output viewer 297
Controller Log viewer 298
Import Objects Overview 299
Fixture 300
Pixel Matrix 302
KiNET Power Supply 303
Patch 305
TPC Interface 307
Philips Color Kinetics 308
Export Object 310
Preferences 311
Scripting Overview 318
Custom Preset Programming Guide 319
Custom Preset Scripting Examples 332
Trigger Script Programming Guide 336
Lua API (Triggering) 341
Scripting Examples 343

Conditions 343
Actions 343

Variants 348
Introduction 348
Usage 348
Shorthand 350
Variant Definition 350
Default Variants 350

API v4 351
API Queries 351
API Actions 375
API Subscriptions 405
API Objects 409

API Authentication 411
Cookie Authentication 411
Token Authentication 411

Legacy API 413
API v3 414

API Queries 414
API Actions 436

- 4 -

Contents

API Subscriptions 463
API Objects 467

API v2 469
API Queries 469
API Actions 490
API Subscriptions 516
API Objects 520

API v1 522
API Queries 522
API Actions 543
API Subscriptions 569
API Objects 573

Legacy API 575
Legacy HTTP API 576
JavaScript Query Interface 578

Usage 578
Examples 580

JavaScript Query Examples 581
Trigger Programming Guide 590
Lua API (Triggering) 595
Scripting Examples 602

Conditions 602
Actions 602

API Change Log 608
Changes in API v4 from API v3 608
Changes in API v3 from API v2 608
Changes in API v2 from API v1 608

Issues 609
Frequently asked questions 612
Troubleshooting 617
Controller Recovery 621
Conversion Overview 628

Projects 628
Hardware 628

Migration Tools 629
What's Changed from v1.x.x to v2.x.x 631

General 631
Project 631
Plan 631
Patch 631
Mapping 632
Scene 632
Timeline 632
Interface Editor 632
Triggers 632
Simulate 632
Network 633
Web Interface 633

Script Conversion 634
Software release notes 636
System limits & capacities 637

Best Practices 638
Silent Install 640

- 5 -

Pharos Designer User Manual

Glossary 641

- 6 -

Welcome

Welcome
Introduction
Welcome and thank you for using version v2.7 of the Pharos Designer software. This release offers some significant
improvements and additional functionality over earlier versions, see New In for details.

WARNING: Projects saved with v2.7 can not be opened with earlier versions so pleasemake sure to back up your
programming prior to installation.

Help Overview
The Help is split into fivemain sections: Quick Start, Hardware, Reference, Troubleshooting, and Appendices.

Those of you experimenting with the software for the first time are advised to work through theQuick Start guide to
familiarise yourself with the basics of the software. The Reference section gives detailed descriptions of every
aspect of the software as well as the configuration of the Pharos Controllers and their accessories. The
Troubleshooting section provides help to resolve any problems while the Appendices provide additional useful
resources.

If you have a Controller that you wish to connect to and program now then please read the Network section for
instructions or follow theQuick Start guide.

Help Help
This is the PDF version of the on-line Help and it is available in various formats for printing. The on-line version,
which has the advantage of being fully searchable and includes animated tutorials, can be opened from within
Designer using Help > Contents on themain toolbar.

Support
As with all successful control products, support is crucial and the team at Pharos will do everything possible to
ensure that your project is a success.

Please do not hesitate to contact us with your questions, bug reports and suggestions at:

T: +44-(0)20-7471-9449
E: support@pharoscontrols.com

Please also visit our website to keep up to date with the latest product news and software releases:
www.pharoscontrols.com.

- 7 -

mailto:support@pharoscontrols.com
http://www.pharoscontrols.com/

Pharos Designer User Manual

New in v2.7
Pharos Cloud:Support within Designer to integrate with Pharos Cloud, our new remote site management service.
You can find out more information on Cloud here and how to set up a Cloud Site here.

Pharos EDN:Support for our new 20 port Ethernet DMX Node, a 1U 19" eDMX to DMX converter to provide 20
DMX/RDM ports per unit. The EDN is ideal for larger control projects - it is associated to a controller in the same
manner as a RIO and is seamlessly configured within Designer as part of your patch.

sACN HTP Merge:Support for merging values for DMX In and eDMX Pass-Through from amaximum of two sACN
sources set at the same universe and channel priority.

Direct Colour Preset:Extending the Direct Colour control in Scenes, we now have a Direct Colour preset available
for Timelines. This slider-based control will allow the user to set the specific values of each emitter on an RGBW/A
or other multi-emitter fixtures with more colours than just RGB.

Timeline Audio Output:Stored audio files (and video files containing audio) can be placed on a Timeline for fully
synchronised audio playback utilising all our standard show control functionality, supported via Stereo line out and
SPDIF on the LPC X (R2 only),VLC and VLC+ hardware.

Render Timeline Audio Waveform:Visual indication of the peak data of an audio clip to aid in synchronising the
audio with the desired lighting presets.

IO Module Status Reporting: IOModules can send status information to theWeb Interface and to Cloud. New and
updatedmodules will be released supporting this functionality.

Manual Unicast Addressing:A new UI for manually specifying unicast addresses for both Art-Net and sACN. This
can either be sent to either a single or multiple IP address for each universe.

Import and Export Universe Properties:Replacing and improving the existing KiNET import, this allows bulk
transfer of universe data such as unicast IP addresses, sACN priorities and other universe settings, as well as
offering the ability to createmultiple universes with all their properties in one simple action.

DMX Input Triggering:New DMX input state trigger and new condition to respond to detection or to loss of the
DMX input signal.

DALI Output Actions:Enhancements to DALI integration;

l To further support DALI RGB / Tc we have implemented changes to DALI actions. The Set DALI Output
action can now set any of the following:

l Level
l XY values
l Temperature
l RGBWA values

l The Send DALI Command action now includes option to change last fade time, allowing an update of the last
used fade time easily without having to trigger off an unwanted effect.

Controller API Enhancements:Numerous additions and improvements to the API. These include:

l Add trigger type filtering to controller API
l Include custom properties in timeline data via controller API
l Include custom properties in scene data from controller API
l Get NTP server via controller API query
l Get and set log level and syslog target via controller API
l Get network primary status via API

- 8 -

https://www.pharoscontrols.com/products/software/cloud
https://www.pharoscontrols.com/cloud/try-cloud-free-for-30-days/

New in v2.7

l Get replication info with HTTP or JavaScript
l Get Scene's group via API

Designer Enhancements:We continue tomake improvements throughout the software, with some of the
highlights in v2.7 including:

l 64-bit Designer forWindows andOS-X
l TPS to run Startup triggers
l Simplify intensity mastering for the VLC
l Improve layout performance at high fixture count
l Preview audiomedia in Designer
l Support for sACN universe discovery packets
l Add toggle state to Output Digital Action
l force_trigger() function bypasses condition to fire a trigger
l Convert RGBA/W fixtures in library to Hue Tables
l Only display IOModules that match the controller API of the current version of Designer

Director Enhancements:Continuing development of our city-wide schedule and content management tool, new
features include:

l Translation support
l Chinese (Simplified) language option
l Master intensity applies to entire controller playback

- 9 -

Pharos Designer User Manual

Introduction
Pharos is a comprehensive system with sophisticated features that allow you tomake advanced shows. The
Designer 2 software is the tool provided to configure and program the Pharos Controllers, Remote Devices and
Accessories. The Controllers have been designed specifically for the architectural and installationmarkets and, as
opposed to DMX frame store solutions, offer genuine lighting and show control functionality in an install and forget
housing.

Lighting is programmed on timelines, with a particular timeline having control data for one, some or all the lighting
fixtures being controlled. Multiple timelines are supported and so a single unit can control multiple distinct zones, or
more complex presentations can be programmedwith external triggers coming frommultiple systems.

The software offers powerful functionality with a simple and intuitive graphical user interface. Most operations can
be performed with mouse clicks (typically left-click for selection and right-click for context sensitive options &
commands) and drag-and-drop. Creating a project is broken down into steps that all have their own tab for an easy
step by step process to setup the system.

- 10 -

Modes Overview

Modes Overview
Mode tabs down the left hand side allow you to switch between theModes by left clicking the tab or use the function
keys (in brackets) to toggle between them. Tabs can be viewed in different windows using the Tear Off options:

Note:Not all modes will be available by default, but will be enabled when relevant. See Project Features for more
details

Project (F1)
In Project, you setup the Project settings such as location and time information, along with the project features that
will bemade available.

See Project for reference.

Layout (F2)
In Layout you add fixture to the project, position them on layouts, arrange them in groups or customize their
behaviour.

See Layout for reference.

Mapping (F3)
Mapping allows you to create virtual video screens andmap fixtures to pixels of the screen. Here you also import
andmanage themedia files (either static images or video) which can then be played back on these screens.

SeeMapping for reference.

Patch (F4)
In Patch the fixtures are assigned to the connected Controllers (see Network) and assigned to control protocols,
universes and addresses. This step can be skipped during design and only completed during installation.

See Patch for reference.

DALI (F5)
In DALI you patch and define DALI groups & scenes for any DALI ballasts in the project. Unlike DMX fixtures, these
definitions are stored in the DALI ballasts themselves and so the configurationmust be uploaded separately from
here.

Only available if Enabled in project properties, a DALI ballast is added to a layout, or a RIOD is added to the project.

See DALI for reference.

Scene (F6)
In Scene, you can create single effects on any fixture within the project. These Scenes can be used later within
Timelines or played back individually using triggering.

See Scene for reference.

- 11 -

Pharos Designer User Manual

Timeline (F7)
Timeline is where you create and edit the timelines that make up your presentation. Each fixture or group of fixtures
is a row of the timeline and you can drag-and-drop from an extensive range of Built-in intensity and colour effects, as
well as placing Scenes, Media and DALI presets.

See Timeline for reference.

Interface (F8)
Interface allows you to create the Interfaces that are displayed on a TPC.

Only available if Enabled in project properties, or a TPC is added to the project.

See Interface for reference.

Trigger (F9)
In Trigger you connect your programming with the real world. At its most basic you can define which timeline to begin
on startup but for more complex environments with external triggers you can define a detailed script, even
incorporating conditions if necessary.

See Trigger for reference.

Simulate (F10)
Simulate allows you to view a representation of your project in Layout format. You can play individual timelines to
check your programming then run the whole project including triggers. A set of buttons allow you to simulate external
triggers in order to test your programming properly.

See Simulate for reference.

Network (F11)
This is where youmanage your Pharos hardware, assigning connected Real Controllers to the Controllers in your
project, configuring their input/output interfaces and any connected Remote Devices.

See Network for reference.

- 12 -

User Interface

User Interface
The software has been designed to present a consistent graphical user interface and so it is worth familiarising
yourself with the layout of a typical window before proceeding further:

Main Toolbar
Themain toolbar persists across all softwaremodes and allows you to see any Issues in your project, access the
Undo and Redo buttons and provides access to theMainMenu.

Issues

The Issues browser will display any problems with the project file and take you to the location where the issue can
be fixed. The location of an issue is indicated within the software with the Issues icon .

Help

The Software Help can be accessed using the Help icon on themain toolbar.

Undo/ Redo

The Undo and Redo buttons can be used to step through the last 20 actions completed within Pharos Designer.

- 13 -

Pharos Designer User Manual

Main Menu

TheMainMenu allows access to the following options:

l Save Project - Save the show file with the current file name
l Save Project As - Save a copy of the project file with a new name
l Archive Project - Save a copy of the project file as a .archive.pd2 file
l Upload
l Audio Viewer
l Timecode Viewer
l Output Viewer
l Controller Log Viewer
l Import Object - Import fixture layouts, Pixel matrices etc.
l Import Interface - Import a .ptc file created in Interface Editor
l Export Object - Export an object as a .csv file
l Preferences - Access the preferences dialog
l Register - Register your copy of PharosDesigner
l Help - Access this help file
l Send Feedback - Contact Pharos Support with feedback on Designer 2
l About
l Exit - Close PharosDesigner

Mode Tabs
The application is divided into elevenModes which can be selected by clicking on the appropriate tab.

See theQuick Start overview for a brief description of eachMode and the relevant Reference section for more
details.

Tear Off Views
All tabs can be torn off so that multiple Modes can be seen at once. This is particularly useful for the Timeline and
SimulateModes.

To tear of a tab either:

l Hover over the view tab until the tear off icon appears, move your cursor over this icon and left-click. The
selectedMode will appear in a separate window.

l Click on aMode tab and drag off the right side of theMode tab bar. The selectedMode will appear in a second
window.

Note: The currently openMode cannot be torn off

Mode Toolbar
The view toolbar is populated with tools and options relevant to theMode which is being worked in. See the relevant
Reference section for more details.

- 14 -

User Interface

Browser
The browser is common tomany views and provides the primary interface for selecting, viewing and grouping
fixtures in the project. The rows of the browser are then used for Designer's timeline programming interface. Some
Modes (Project, Interface, Trigger, Simulate and Network) have no browser since fixture selection is not relevant.
Scroll bars will appear as required and the browser can bemade wider by dragging the right hand border.

Browser Toolbar
The Browser toolbar provides controls for expanding and collapsing groups and compound fixtures as well as for
creating Groups and Pixel Matrices.

Object Tabs
Most of theModes within Designer havemultiple objects that can be opened at once, such as Layouts, Timelines
and Interfaces.

The exceptions are Network and Trigger, which affect the whole project and don't have separate objects within
them.

The tabs can be navigated by selecting them in the Tab bar. They can be closed using the close button within the
tab. This doesn't delete the object, it can be reopened from theManage button on theMode Toolbar.

Main Workspace
TheMain workspace is the central portion of the Designer window and is wheremost project work is carried out.
Each view uses themain workspace in a different way, so see the relevant Reference section for more detail.

Configuration Area
Depending on theMode and items selected, context-sensitive configuration or control pane(s) will appear here for
fast and convenient editing.

Multiple Instances
It is possible to openmultiple instances of Designer so that two projects can be worked on at the same time.

This can be done by opening a Designer 2 project from the operating system when Designer 2 is already open, or by
selecting to open Designer 2 again.

If necessary one of these instances can be Designer v1.x.x.

Note:You cannot open the same project in multiple instances of Designer 2.

Copying Between Instances
When you havemultiple instances of Designer 2 open, you can copy elements from one project to the other:

l Fixtures
l Timeline Presets

- 15 -

Pharos Designer User Manual

Keyboard Shortcuts
For ease and speed of use various keyboard keys map to application commands, particularly with regards window
navigation:

General

Ctrl+Z Undo the last action (up to 20 actions)
Ctrl+Y Redo the last undone action
Ctrl+Tab (+ Tab) Switch to the next tab
Ctrl+Shift+Tab (+ Shift + Tab) Switch to the previous tab
Ctrl+S Save the project
Ctrl+Shift+S Save the Project as New
Ctrl+U Upload the project to controllers
Alt+F4 Quit the application
Escape Close an open popover
Function Keys - F1 through F11 Change view, F1 goes to Project, F11 goes to Network etc.
Alt + F4 (⌘+Q) Close Designer
(⌘+,) Access Preferences
Ctr+T Open (or Close) the Output Viewer

Project

Ctrl+N Create a new project
Alt+left-click on New Project Show New Project wizard
Ctrl+O Open a project
Ctrl+F4 (⌘+W) Close the project

Layout

Ctrl+N Create a New Layout
Ctrl+D Create a duplicate of the current layout
Ctrl+I Show layout properties
Ctrl+A Select all fixtures
Double-left-click on a fixture Select all instances of the fixture
Ctrl+left-click on a fixture Toggles its selection
Alt+left-click on a composite fixture Select an element of a fixture
Alt+left-click on background + drag Select elements or fixtures using a lasso
Alt+left-click on fixture + drag Select elements or fixtures using a lasso
Left-click on background + Alt + drag Select whole fixtures using a lasso
Left-click on fixture + Alt + drag Constrain movement to one axis (horizontal or vertical directions)
Shift while selecting fixtures with a
box Selection order based on position, otherwise based on fixture number

Tab Select the next fixture by number

- 16 -

Keyboard Shortcuts

Shift+Tab Select the previous fixture by number
Ctrl+left-click while in add fixture
mode (blue border) Toggle the behaviour of Auto-finish

Alt+left-click while in add fixturemode
(blue border)

Add an instance of the last added fixture (or a new fixture if no fixture is
added yet)

Escapewhile in add fixturemode
(blue border) Finish adding fixtures

Escape otherwise Toggle last fixture selection
Ctrl+drag Create duplicates of the selected fixtures
Ctrl+Alt+drag Create instances of the selected fixtures
Shift while dragging fixture/s Disable fixture snapping
Delete/Backspace Delete selected fixtures

Shift+Delete/Backspace Delete selected fixtures from the Layout but keep the fixture in the project,
even if they no longer exist on a layout

Ctrl+Delete/Backspace Delete selected fixtures from the project

Shift+ 'Remove From Layout' Delete selected fixtures from the Layout but keep the fixture in the project,
even if they no longer exist on a layout

Ctrl+X Cut the selected fixtures
Ctrl+C Copy the selected fixtures
Ctrl+V Paste fixtures from the clipboard
Ctrl+Shift+V Paste instances of fixtures from the clipboard
Up/Down/Left/Right Nudge the selected fixtures by the grid spacing
Shift+Up/Down/Left/Right Nudge the selected fixtures by 1 pixel
Space+drag Pan the view
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Middle-click + drag Zoom into the drawn rectangle

Left-Click + drag + Shift Pressing Shift after starting a lasso selection will sort by the aspect ratio
(see here)

Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Ctrl+drag on Transform tool drag
handle Maintain aspect ratio of selection

Alt while dragging fixture/s Lock movement to a single axis

Browser

Delete/Backspace Delete selected fixtures, groups or pixel matrices
Ctrl+left-click Select multiple fixtures, groups or pixel matrices
Shift+left-click Select all fixtures, groups or pixel matrices between two selections.
Alt+left-click Deselects the contents of the group/pixel matrix

- 17 -

Pharos Designer User Manual

Up/Down Move current row indicator up and down, and select the row
Shift + Up/Down Move current row indicator up and down, and add the row to the selection
Ctrl + Up/Down Move current row indicator up and down, but don't change the selection
Left/Right Collapse/Expand current group
Space Select current row
Ctrl + Space Add current row to the selection

Mapping

Ctrl+N Create new pixel matrix
Ctrl+D Duplicate the current pixel matrix
Ctrl+I Show pixel matrix properties
Ctrl+C Copy the selectedmedia
Ctrl+V Pastemedia from the clipboard into the current folder
Delete/Backspace Delete selectedmedia
Up/Down/Left/Right Nudge the selected items by 1 pixel
Space+drag Pan the view
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Spacewithmedia preview open Start/Stopmedia preview
Shift click on overlapping elements Open selector to chose which element to select
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Patch

Ctrl+N Show AddUniverse popover
Ctrl+A Select all patch records
Delete/Backspace Delete selected patch
0-9 Type a universe number and the view will scroll to it after a short delay
Page Up/Down Scroll to previous/next universe
Ctrl+Tab Switch to the next protocol
Ctrl+Shift+Tab Switch to the previous protocol

DALI

Ctrl+N Create a new DALI Interface
Ctrl+I Show DALI interface properties
Escape in SceneMode Toggle last fixture selection
Ctrl+0 in SceneMode Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ in SceneMode Zoom in
Ctrl+- in SceneMode Zoom out
Ctrl+ mouse wheel in SceneMode Zoom in and out
Middle-click + drag in SceneMode Zoom into the drawn rectangle

- 18 -

Keyboard Shortcuts

Alt+ mouse wheel (Shift+ mouse
wheel) in SceneMode Scroll Horizontally

Scene

Ctrl+N Create a new Scene in the current folder
Escape Toggle last fixture selection
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Middle-click + drag Zoom into the drawn rectangle
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Timeline

Ctrl+N Create a New Timeline
Ctrl+D Duplicate the current timeline

Ctrl+G Go to timeline (enter name or number to filter the list); when one choice
remains, press Enter to show the timeline

Ctrl+I Show timeline properties
Ctrl+A Select all timeline programming
Delete/Backspace Delete selected timeline programming
Ctrl+left-click while adding presets Toggle the behaviour of Auto-finish
Ctrl+drag start/end of preset Snap to nearest preset, flag or waypoint
Shift+drag preset Finer resolution for drag (it snaps to the nearest 0.1s when Shift isn't held)
Ctrl+left-click while adding flags Add flag and don't leave Add Flagmode
Esc Finish adding presets or flags
Up/Down/Left/Right Scroll the view
Space Start/pause Simulation
Esc while simulating timeline Stop Simulation
Fwhile simulating If in Add Flagmode, drop a flag at the simulation time
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Esc while moving Gradient stop Cancel changing gradient

Interface

Ctrl+N Create a new Interface
Ctrl+I Show interface properties
Alt+ select Colour Picker Sets the startup colour of the colour picker to the selected colour
Ctrl+drag on one or more control Creates a duplicate of the selected control/s

- 19 -

Pharos Designer User Manual

Trigger

Ctrl+N Create a new trigger of the last created type
Ctrl+left-click on a trigger, condition or
action Toggles its selection

Shift+left-click Select a range of triggers, conditions or actions

Ctrl+A When nothing is selected, select all triggers; when a condition or action is
selected, selects all conditions/actions of the parent trigger

HoldCtrl while dropping a dragged trig-
ger Create a copy of the trigger at the drop location

HoldShift while dropping a dragged
condition or action Move the condition or action to the trigger it is dropped on

Delete/Backspace Delete selected triggers, conditions or actions
Up/Down Move current row indicator up and down, and select the row
Shift + Up/Down Move current row indicator up and down, and add the row to the selection
Ctrl + Up/Down Move current row indicator up and down, but don't change the selection
Left/Right Collapse/Expand current trigger
Space Select current row
Ctrl + Space Add current row to the selection
Ctrl+B in Script Editor Compile script

Simulate

Space Start/Pause Simulation
Esc Stop Simulation
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Middle-click + drag Zoom into the drawn rectangle
Alt+ mouse wheel (Shift+ mouse wheel)Scroll Horizontally

Notes For Mac OS X Users
Unless otherwise noted, keyboard shortcuts onMac OSX are the same as Windows, except Ctrl is replaced with
⌘ . Shift and Alt work as described forWindows.

Within Layout, Scene and Simulate, you can use Scroll gestures tomove around the Plan.

Pharos Designer makes a good deal of use of the two buttonmouse with right-click being used to invoke context-
sensitive dialogs. As themajority of Mac users have only a single buttonmouse they must hold Ctrl while clicking to
get this functionality.

- 20 -

System Requirements

System Requirements
Pharos Hardware Requirements
This version of Pharos Designer can be used with the following controllers:

l Pharos LPC 1/2/4: Serial numbers greater than 006xxx
l Pharos LPC X: All Serial numbers
l Pharos VLC : All Serial numbers
l PharosVLC+ : All Serial numbers
l Pharos TPC (with or without EXT): All Serial numbers

Note: LPCs with a Serial number lower than 006000 and AVCs are only supported in Designer 1.x.x.

Computer System Requirements
Supported Operating Systems

l Microsoft Windows 7/8/10 (64bit)
l AppleMac OS X 10.8.x (Mountain Lion) – 10.12.x (Sierra)

Minimum Requirements
l Intel Core i3 processor or above
l 2GB RAM
l 1GB free hard disk space
l 1024×768 screen resolution
l OpenCL 1.2 graphics support (for VLC/VLC+ simulation)
l Network connection (for connecting to Pharos hardware)

Recommended
l Intel Core i5 processor or above
l 8GB RAM
l 1920×1080 screen resolution

Web Interface Support
The Default Web Interface on a controller is supported by all modern web browsers, e.g. Edge, Firefox, Safari,
Chrome and Chromium based browsers.

CustomWeb Interface browser support will vary depending upon the Interface.

- 21 -

Pharos Designer User Manual

Hardware Overview
This version of Pharos Designer can be used with the following controllers:

l Pharos LPC 1/2/4: Serial numbers greater than 006xxx
l Pharos LPC X: All Serial numbers
l Pharos VLC : All Serial numbers
l PharosVLC+ : All Serial numbers
l Pharos TPC (with or without EXT): All Serial numbers

Note: LPCs with a Serial number lower than 006000 and AVCs are only supported in Designer 1.x.x.

Controllers
LPC 1/2/4
The Pharos Lighting Playback Controllers (LPCs) are solid state lighting controllers capable of being programmed
with a series of light shows which can be controlled through either internal of external triggering.

This programming is all preprogrammed through the Pharos Designer software before being uploaded to the
controller for stand alone operation.

Each type of LPC is capable of controlling a number of universes of DMX or eDMX compatible lighting fixtures. The
number of universes that can be controlled is indicated by the number in the name of the controller (e.g. LPC 1).

More information is available here

LPC X
The LPC X is designed tomeet the unique needs of large landmark projects. It is available in capacities ranging from
10DMX universes up to 100 DMX universes from a single unit with further scaling over Ethernet.

The LPC X provides the same programming options as the LPC, but the outputs are limited to eDMX protocols.

More information is available here

TPC
The TPC is a Lighting Playback Controller with a touchscreen, allowing for simple user interaction with the
programmed show file, and output of 1 universe of eDMX lighting control data.

As with all controllers, the programming for the TPC is done through Pharos Designer and uploaded to the TPC.

More information is available here

EXT
The EXT is an extension to the TPC to provide additional connectivity to external systems and devices. It is amains
powered device, which provides PoE to the TPC, along with Digital/Analog inputs, a DMX connection, an RS232
connection and a DALI connection.

More information is available here

- 22 -

http://pharoscontrols.com/products/lighting_controllers/lpc
http://pharoscontrols.com/products/lighting_controllers/lpc-x
http://pharoscontrols.com/products/controllers/tpc
http://www.pharoscontrols.com/products/accessories/ext/

Hardware Overview

VLC
The VLC is designed to handle large single canvases of DMX fixtures e.g. building façades, bridges or media
screens. It is available in capacities ranging from 50DMX universes up to 1500 DMX universes from a single unit
with further scaling over Ethernet.

As with the other controller's, the VLC is programmed through Pharos Designer and uploaded to the VLC.

More information is available here

VLC+
The VLC+ is designed to handle large single canvases of DMX fixtures e.g. building façades, bridges or media
screens. It is available in capacities ranging from 50DMX universes up to 3000 DMX universes from a single unit
with further scaling over Ethernet, and allows multiple layers of media output to be displayed on the canvas, along
with dynamically moving and rotating the content.

As with the other controllers, the VLC+ is programmed through Pharos Designer and uploaded to the VLC+.

More information is available here

Remote Devices
Remote Devices can be used alongside controllers to increase the functionality and/or connectivity of the control
system. They are connected to the controller using Ethernet network connections andmost are powered over PoE
using the same connection.

RIO (08/44/80)
The three types of input/output RIOs allow various amounts of inputs and outputs to be added to the system. The
inputs can be used for triggering within the project, and the outputs can be used to turn on other systems using volt
free relays.

More information is available here

RIO D
The RIOD allows for connection of the Pharos system to a DALI bus. This can be used either to output
DALI commands to DALI ballasts, or to receive DALI commands from aDALI controller (or both).

See DALI for more information about outputting and DALI Triggers for more information about receiving
DALI commands

More information is available here

RIO A
The RIO A provides additional MIDI connections, and an Audio input into a project. This audio input allows for
triggering based on the volume of the incoming audio, or the audio input can be used to receive Linear TimeCode into
the project.

More information is available here

- 23 -

https://www.pharoscontrols.com/products/controllers/vlc/
https://www.pharoscontrols.com/products/controllers/vlc/
http://www.pharoscontrols.com/products/remote-devices/rio/
http://www.pharoscontrols.com/products/remote-devices/rio-d-dali/
http://www.pharoscontrols.com/products/remote-devices/rio-a-audio/

Pharos Designer User Manual

BPS
The Pharos BPS is a Button Panel Station which provides 8 programmable buttons, which can be used to control
aspects of the project. Each button includes a white LED, which can be freely programmed to output various effects.

More information is available here

TPS
The Pharos TPS is a Touch Interface which can be used to control aspects of the project. The Interface is designed
within Pharos Designer and uploaded to the TPS as part of the project.

More information is available here

EDN
The Pharos EDN is an Ethernet DMX Node which provides 20 outputs of eDMX to DMX/RDM.

- 24 -

http://www.pharoscontrols.com/products/remote-devices/bps/
http://www.pharoscontrols.com/products/touch-devices/tps/

Hardware Setup

Hardware Setup
LPC 1/2/4
The basic setup for an LPC 1, 2 or 4 requires a power connection, a data connection and an output.

Power Connection

There are two options for power connection:

l DC Power - The LPC can receive 9-48V DC via the DC input on the bottom of the controller.
l PoE (Power over Ethernet) - This is provided by a PoE enabled network switch or PoE in-line injector.

Data Connection

To communicate between a controller and Designer, a data connection is required.

The physical connection can be achieved using either:

l a USB A-B cable
l an Ethernet cable (straight or crossover)
l an Ethernet network (with switch/hub/router)

The data connection for all of these configurations will be a network connection, through either standard network
connections or a USB to Ethernet connection.

Output

To control any fixtures there will need to be a connection between the controller and the fixtures.

If using DMX, you will need a 3 core connector between one of the DMX ports and the DMX input of the first fixture
on the DMX chain.

If using eDMX, this communication uses the Ethernet connection of the LPC, so the LPC and the receiving device
must be connected to the same Ethernet network.

LPC X, VLC, VLC+
The basic setup for an LPC X, VLC, VLC+ requires a power connection and 2 Ethernet connections.

Power Connection

The LPC X, VLC, VLC+ is amains powered device which can auto-detect the incoming power, and is compatible
with all worldwidemains standards: 100-250V 50/60Hz.

This connection is made using an appropriate mains IEC cable.

Data Connection

The LPC X, VLC, VLC+ has 2 Ethernet ports, one for "Management" data and one for "Protocol" data.

- 25 -

Pharos Designer User Manual

Management data refers to any communication between Designer and the controller or between the controller and
other controller, remote device or third party control systems.

Protocol data refers to the eDMX lighting outputs which are transmitted over the Ethernet connection to the receiving
device/s.

These two connection should bemade to separate ethernet networks containing the relevant equipment.

TPC
The basic setup for an TPC requires a PoE Ethernet connection to provide both power and data communication

This can be provided either from a PoE enabled switch or an in-line injector.

TPC + EXT
Alternatively the TPC can be powered by the EXT. This takes in mains power and outputs PoE to a TPC. In addition,
the EXT provides connectivity options to complement the touch screen interface.

TPS
The basic setup for an TPS requires a PoE Ethernet connection to provide both power and data communication

This can be provided either from a PoE enabled switch or an in-line injector.

Remote Devices
All remote devices require a single connection to communicate with their associated controller.

Power Connection

The power for a remote device is provided over a Power over Ethernet connection.

Data Connection

This is provided by an Ethernet connection to the controller that it has been assigned to.

- 26 -

Port Specifications

Port Specifications
DMX
Note:Relevant to LPC, EXT

The pins on these connectors aremarked:

Data + ('Hot' or 'True')

Data - ('Cold' or 'Complement')

Chassis ground ('Shield')

Note: The DMX ground is internally linked to the ground on the DC Input

Tomake up a cable to a 5 pin XLR the following connections should bemade:

LPC 3/5 pin XLR

Data + 3

Data - 2

Shield 1

MIDI Input And Output
Note:Relevant to LPC and RIO A

TheMIDI input and output connectors are standard 5 pin DIN connections. They may be connected directly to any
standardMIDI device.

Inputs
Note:Relevant to LPC, EXT and RIO (44/80)

Can be configured as Digital Input, Analog Input or Contact Closure.

Contact Closure

An external volt-free switchmay be connected between the input pin and the signal ground pin.

In this mode, the input pin is internally pulled-up to 5V via a 2.2Kohm resistor, so the switch only needs to be rated at
5V, 2.5mA or greater.

Digital Input

An external voltage source (such as a 12V trigger output) may be connected between the input pin and the signal
ground pin. In this mode, the input pin is internally pulled down to 0V via a 2Mohm resistor and themaximum input
voltage supported is 24V.

- 27 -

Pharos Designer User Manual

The LPC may be configured to specify what the 'high' and 'low' threshold voltages are. This facility can be used to
provide 'Schmitt trigger' action.

Analog Input

An external voltage source (such as a 0-10V analog signal) may be connected between the input pin and the signal
ground pin.

In this mode, the input pin is internally pulled down to 0V via a 2Mohm resistor and themaximum input voltage
supported is 24V.

The LPC may be configured to specify what the input voltage range is. Voltages inside this range are reported as 0%
to 100%.

Relay Outputs
Note:Relevant to RIO (08/44)

The RIO features 8 (RIO 08) or 4 (RIO 44) relay outputs on two (RIO 08) or one (RIO 44) 8 way connectors.

The RIO relays are rated at 48V, 0.25A. This comparatively low rating is due to the use of solid-state relays to
ensure silent operation and long-term reliability.

All relay outputs are fully isolated from each other and all other ports.

Ethernet
Note:Relevant to LPC, TPC, TPS, LPC X, VLC, VLC+ ,EXT and Remote Devices

A standard 10/100TX Ethernet connectionmay bemade to the device. If the device supports Power-over-Ethernet
(PoE), a PoE switch or in-line injector can be used. The LEDs on the RJ45 jack itself are useful for debugging the
Ethernet installation:

The Lnk LED will illuminate when an Ethernet link has been established.

The Dat LED will illuminate to indicate Ethernet traffic (not just Pharos-relevant).

RS232/RS485 Serial Port
Note:Relevant to LPC, LPC X, VLC, VLC+ , EXT and RIO (08/44/80)

The serial port's protocol (RS232 or RS485), data rate and format settings (baud, parity, stop bits, etc.) are
configured using Designer.

In RS232mode, the port operates in full duplex with the following pinout:

R/+ Receive
T/- Transmit

Signal Ground

In RS485 (and DMX In) mode, the port operates in half duplex with the following pinout:

R/+ Data +
T/- Data -

- 28 -

Port Specifications

Signal Ground

Note:Not available on LPC X, VLC or VLC+ , these support RS232 only.

The serial port is not isolated from the power supply. If isolation is required, it must either be provided by the
connected device or a separate isolator should be used.

Analog Audio Input
Note:Relevant to RIO A

Balanced stereo audio input is provided@ 0dBV line level on a 6 way connector:

Balanced audio right channel +

Balanced audio right channel - (tie to ground for unbalanced)

Signal ground

Balanced audio left channel +

Balanced audio left channel - (tie to ground for unbalanced)

Signal ground

The audio input can also accept linear time code (LTC) such as SMPTE/EBU on either channel, but not both,
configured using Designer. The Audio / LTC LED will indicate peak for audio and valid for time code.

DALI
Note:Relevant to EXT and RIOD

A DALI bus interface is provided on a 3 way connector:

DALI bus (polarity insensitive)

DALI bus (polarity insensitive)

Chassis ground (for optional shield)

Note: The EXT and RIOD do not provide DALI power, so a separate DALI power supply is required.

Video Input And Output

DV Firewire Input

Standard IEEE 1394 (Firewire) connection whichmay be used as a live video input (configured within a timeline)

Note: Only available on LPC X Rev 1 (Serial Numbers below: 011000)

DVI-D Input

Standard DVI-D connection whichmay be used as a live video input to a Pixel Matrix, or VLC matrix (configured
within a timeline).

Note: Available on VLC, VLC+, or LPCX Rev 2 (Serial Numbers above: 011000) as an optional extra

- 29 -

Pharos Designer User Manual

DVI-I Output

Standard DVI-I Output which can be used to connect amonitor to display the current output of a pixel matrix (LPC X)
or VLC output.

Note: Available on LPCX, VLC and VLC+

- 30 -

TPC Learning Infrared Receiver

TPC Learning Infrared Receiver
The TPC may be taught to recognise up to 16 different infrared (IR) codes from a standard IR remote control. When a
key on the remote control is pressed during normal operation, the TPC will react as though one of its user interface
controls has been touched.

The TPC does not have to be part of a networked system to learn IR codes, all that is required is PoE power and the
donor remote control:

To Enter Learn Mode:
1. Enter by pressing the CFG (config) button. This is located underneath themagnetic overlay at the top left of the
display, underneath the Reset button.

l The screen will display the IR configuration interface.

To Learn An IR Code:
1. Press the Set button alongside the code to be learnt.

l A progress indication will appear on the left of the row.

2. Within ten seconds, point the IR remote at the TPC and press the desired key.

l The progress indication will be replaced with a tick icon when the code has been learnt.

To Test An IR Slot
1. Point the IR remote at the TPC and press a key.

l If the IR code received is associated with an IR slot, the slot will be highlighted.

2. Release the key on the IR remote.

l The IR slot will no longer be highlighted.

To Erase An IR Code:
1. Press the Clear button alongside the code to be erased.

l The tick icon next to the code will disappear.

To Exit Learn Mode:
1. Press the CFG (config) button.

l The screen will display the user interface for the loaded presentation, or indicate that no user interface is
present on thememory card.

- 31 -

Pharos Designer User Manual

BPS Learning Infrared Receiver
The BPS may be taught to recognise up to 8 different infrared (IR) codes from a standard IR remote control. When a
key on the remote control is pressed during normal operation, the BPS will react as though one of its 8 buttons has
been pressed.

The BPS does not have to be part of a networked system to learn IR codes, all that is required is PoE power and the
donor remote control:

To Enter Learn Mode:
1. Enter by holding down the bottom two buttons while pressing and releasing reset.

l The buttons will display a clockwise chase sequence

2. Release the bottom two buttons.

l Each button will flash quickly (4Hz) if an IR code has been learnt, or slowly (1Hz) if not
l No network communication will operate while in LearnMode
l LearnMode will automatically exit after 60 seconds of inactivity

To Learn An IR Code:
1. Briefly press and release a single button which should learn the IR code.

l The button will start flashing rapidly (8Hz) and the other buttons will extinguish

2. Within ten seconds, point the IR remote at the BPS and press and hold the desired key.

l The buttons will display a clockwise chase sequence when the IR code has been learnt

3. Release the key on the IR remote.

l The button now will be flashing quickly (4Hz) to indicate that it has an IR code stored

To Erase An IR Code:
1. Press and hold for three seconds the button which should erase its IR code.

l The buttons will display a clockwise chase sequence when the IR code has been erased

2. Release the button.

l The button will now be flashing slowly (1Hz) to indicate that it has no IR code stored

To Test An IR Code:
1. Point the IR remote at the BPS and press and hold the key to test.

l The button(s) that has learnt this code will illuminate solidly, all others will extinguish

2. Release the key and test the others.

To Exit Learn Mode:
1. Press the reset button or wait for 60 seconds.

- 32 -

BPS Learning Infrared Receiver

l The buttons will now revert to normal operation
l Network communication will resume

- 33 -

Pharos Designer User Manual

TPS Learning Infrared Receiver
The TPS may be taught to recognise up to 16 different infrared (IR) codes from a standard IR remote control. When a
key on the remote control is pressed during normal operation, the TPS will react as though one of its user interface
controls has been touched.

The TPS does not have to be part of a networked system to learn IR codes, all that is required is PoE power and the
donor remote control:

To Enter Learn Mode:
1. Enter by pressing the CFG (config) button. This is located underneath themagnetic overlay at the top left of the
display, underneath the Reset button.

l The screen will display the IR configuration interface.

To Learn An IR Code:
1. Press the Set button alongside the code to be learnt.

l A progress indication will appear on the left of the row.

2. Within ten seconds, point the IR remote at the TPS and press the desired key.

l The progress indication will be replaced with a tick icon when the code has been learnt.

To Test An IR Slot
1. Point the IR remote at the TPS and press a key.

l If the IR code received is associated with an IR slot, the slot will be highlighted.

2. Release the key on the IR remote.

l The IR slot will no longer be highlighted.

To Erase An IR Code:
1. Press the Clear button alongside the code to be erased.

l The tick icon next to the code will disappear.

To Exit Learn Mode:
1. Press the CFG (config) button.

l The screen will display the user interface for the loaded presentation, or indicate that no user interface is
present on thememory card.

- 34 -

Project Overview

Project Overview

The Project View is used tomanage a project.

Project Toolbar

The project toolbar allows you to start a New project, Open existing projects, Save Project and Save Project As New
or Close the current project.

You can also access Reports on the project from here

Recent Projects Browser

The right hand section of the Project tab will display information on the fivemost recent projects to be worked on.

To enable ease of identification, this pane will display the filename, file path, and last modification date and time.

Project Tabs

The right hand section of the Project tab contains the Project Properties, Project Features, Web Interface, Custom
Properties and About tabs.

- 35 -

Pharos Designer User Manual

New Project Wizard
The New Project Wizard

Choosing New Project will open the New Project Wizard, which can be used to either quick start a project for a
controller or customise the project.

Quick Start
Selecting a controller type will create an empty project with the defaults for the selected controller.

Custom

The Project properties page allows you to set the Name, Author, Location and someNotes for the project

- 36 -

New Project Wizard

The Network Setup allows you to add any Pharos devices on the network to the project or add an offline device.

To add Remote devices, select a controller in the project, then add anOnline or Offline controller to the controller.

The Choose Protocols page allows you to deselect any protocols that will not be used in the project. Show advanced
view will allow you to setup any Project Features.

- 37 -

Pharos Designer User Manual

Project Properties

Project Properties
Project Identification
The project filename (*.pd2) and path is displayed for reference.

Underneath are two fields for optionally entering a project title and the project's author, these fields are displayed on
the Controller's web interface home page and are useful for reference once the installation is completed.

If the title field is left blank the web interface will instead display the project's filenamewhichmay be useful for
tracking iterative versions.

The Notes section is a good place tomake notes specific to this project.

Resources
The resources section allows you to specify which project resources are included when you save the project.

The resources will always be included when the project is archived.

Location

City Or Latitude/Longitude

The location settings are used to set the location of the installation to ensure correct operation of the Controller's
internal astronomical clocks. A city picker is provided to facilitate the coordinate entry but values can be entered
directly into the Latitude and Longitude boxes, this information can be found online.

- 38 -

Project Properties

Time Zone

The local time zone can be entered as an offset to GMT, for example New York would be -05:00 being 5 hours behind
GMT. If the city picker is used to select the location then the time zone will automatically be set.

Daylight Saving Time

Check the Daylight Saving Time box to enable automatic DST adjustment. The rules for Daylight Saving differ by
region but, if the city picker is used to select the location, the correct settings for that region should appear in the
DST on rule and DST off rule fields.

Layout Colours

Selection Colour

This is the colour used to highlight a fixture icon on the Layout, Scene or DALI Scenes Layout, when it is selected.

Accent Colour

This is the colour used to highlight a fixture icon on the Layout, Scene or DALI Scenes Layout, when it has been
programmed or is being Highlighted.

Default Layout Properties
These properties will be used for any new Layout created after changing the properties and will not affect existing
layouts (unless the Apply to All button is used). These properties can be adjusted on a per layout basis

Size

The Layout size can be set via theWidth and Height fields (in pixels). Themaximum Layout size is 8192x8192
pixels.

The "Snap size to background image" button allows you to set the layout size to be the same as an imported
background image.

Background Image And Mode

You can set an image to be the background for a Layout. This may be a fixture plan to allow you to easily locate the
fixtures within the project, or a photo of the project space to allow you to visualise the lightingmore effectively.

The image can be in Bitmap (*.bmp), Portable Network Graphics (*.png) or JPEG (*.jpg) format.

Once you have added a background image, you can chose how it is applied to the layout using the Background
Mode.

l Actual Size - display the image at 1:1 scale
l Fit - scale the image so its largest dimension fits on the layout (maintaining Aspect Ratio)
l Fill - scale the image so its smallest dimension fits on the layout (maintaining Aspect Ratio)
l Stretch - Fit the image to the background (doesn't maintain Aspect Ratio)

- 39 -

Pharos Designer User Manual

Background Colour

When a background image hasn't been set, a background colour can be used to helpmake the lightingmore visible
against the background.

Grid

TheGrid colour option allows you to set the colour that the grid is displayed in. Generally this should be a colour that
is visible on your chosen background.

TheGrid spacing can be specified in pixels. This is the grid on the layout which fixtures can be snapped to.

TheGrid subdivisions defines the interval of major gridlines. These are the gridlines which are shown in bold on the
layout.

Note: The Pharos Designer fixture library uses a scale of 1cm:1pixel (0.394":1pixel) for the fixture icons so, for best
results, background images should be to this scale. If your installation is too large to be accommodated at this scale
(i.e. bigger than 81.92m in either axis) then change the scale and use the Fixture Size settings to adjust the scale of
your fixture icons accordingly. Alternatively, you can split your installation across multiple layouts.

Playback

Override Priority

Chose the priority at which to output Overrides (from the Set RGB action or from scripting).

These priorities match up with the Timeline priorities and work in the same stack.

To ensure that overrides are always on top of other programming, set this to High.

Setting the priority to a lower level allows the override colour to go below other timelines, which can allow the use of
a transparency within programming.

Note: Tomatch v1.x.x behaviour, set this to High

Controller API

API Version

The API Version setting will allow you to specify the API version that the project should use. If set to Legacy, this
will use the older API (no longer documented in this Help), whereas if an API version is set, that API will be used:

l API Version 1.0

- 40 -

Project Features

Project Features

The Project Features Tab allows you to select the features that will be available to the current project.

By default features such as the DALI, Scene and Interface Editor Tabs are not visible, but when the relevant
elements are added e.g. a DALI Ballast, the tab will become visible.

The same is true for various trigger types and protocols.

Options

Disabled The feature will not be visible in this project
Enabled The feature will always be visible in this project
Auto The feature will become visible when an associated element is added to the project

When a feature is marked as Active, it is available within the project

In-Situ Enable

Certain features without an auto option have an in-situ enable option . This will enable the feature without having
to come back to the Project Features page.

Protocols
Select which protocols are available to create new universes in the Patch View.

l Pathport - Used exclusively with Pathway products (Default: Auto, Active)
l Art-Net - Typically used with Artistic Licence products (Default: Auto, Active)
l KiNET - Used exclusively with Philips Color Kinetics products (Default: Auto, Active)

- 41 -

http://www.pathwayconnect.com/
http://www.artisticlicence.com/
http://www.colorkinetics.com/

Pharos Designer User Manual

l sACN - Developed by ESTA as an eDMX standard (Default: Auto, Active)
l RIO DMX - Used to output DMX from a Pharos RIO 08/44/80 (Default: Auto)
l DALI - DALI Mode, triggers and actions (Default: Auto, Enabled by adding a DALI Ballast or RIO D)
l Tridonic custom DALI commands - Specific commands for Tridonic DALI devices (Default: Disabled)
l DVI - An output option on the LPC X (Default: Enabled, Active)
l eDMX pass-through - Used to receive eDMX and send it out of a DMX port (LPC or TPC+EXT)
(Default: Auto, Active)

l DMX proxy - Allows an LPC 1 to output a TPC's DMX universe (Default: Auto)
l Timeline audio (beta) - Allows audio presets to be placed on timelines for synchronous playback on LPC X,
VLC and VLC+(Default: Auto)

Trigger
Select which Trigger types are available:

l Digital/Analog IO - (Default: Auto, Active)
l Serial - (Default: Auto, Active)
l MIDI - (Default: Auto, Active)
l Ethernet - (Default: Enabled, Active)
l DMX In - (Default: Enabled, Active)
l RIO - (Default: Auto)
l BPS - (Default: Auto)
l Timecode - Used in Triggers or Actions (Default: Auto)
l Audio - Used in Triggers or Actions (Default: Auto)
l Live video - Used in Triggers (Default: Auto)
l Lua script - Used in Triggers or Actions (Default: Enabled, Active)
l IO modules - Used in Trigger (Default: Enabled, Active)
l IO module creator - Use in Trigger - Modules to create new IO Modules (Default: Disabled)
l Trigger Variables - Variable options for Conditions and Actions (Default: Disabled)
l Trigger controller edit - Used in triggers to determine which controller/s run the trigger/conditions/actions
(Default: Disabled)

Devices
Select the controller specific sections tomake available:

l Touch Devices - (TPC/ TPS) InterfaceMode, TPC Triggers and Actions (Default: Auto)
l VLC - Compositions within MappingMode, VLC Actions (Default: Auto)
l VLC+ - Compositions within MappingMode, VLC+ specific Content Targets, Masks, Content Target Actions
(Default: Auto)

l Cloud Integration - Allows Designer to link to a Pharos Cloud Site and associate controllers with the Site.
(Default: Auto)

l EDN - Support for the Pharos Ethernet DMX Node (Default: Auto)

Editors
Select which editors to make available:

l Scene - Scenemode, triggers and actions (Default: Auto)
l Custom Presets - Used within Mapping and Timeline (Default: Disabled)
l Install Replications - Used in Network to replicate the project over multiple sets of controllers
(Default: Disabled)

l Additional VLC+ Targets - Used across the project to add Targets 3-8 for the VLC+ (Default: Disabled)

- 42 -

Web Interface

Web Interface
TheWeb Interface tab within the Project view contains various settings relating to theWeb Interface of the project.

Properties for both the Default web interface and CustomWeb interfaces can be accessed from here.

Custom Interface Theme
These settings can be used to customise the default web interface where a simple rebranding is required.

Theme

The theme of the Default web interface is defined by a CSS file, based on the Bootstrap environment. This can be
overridden by a user created CSS file.

The CSS style could be a Bootstrap theme, such as those available from Bootswatch, or a simple custom written
CSS file to style the web interface, utilising web browser inspection tools.

Favicon

The favicon can be specified using the Import button. This will prompt you to search for an image file to add to the
project.

A favicon is generally 16 x 16 px, so can't contain much detail.

Once set, you will need to upload the project to see the change.

- 43 -

https://bootswatch.com/

Pharos Designer User Manual

Logo

Within the web interface a logo is displayed. Typically this will be the Pharos logo, but this can be changed to any
image imported into the project.

Once set, you will need to upload the project to see the change.

Custom Certificate
It is possible to access the controller's web interface using a secure connection (HTTPS andWSS).

A custom SSL certificate may be installed. If a DNS record has been setup for the controller's IP address then this
allows a certificate for the domain from a trusted Certificate Authority (CA) to be used. Web browsers will
automatically verify a certificate from aCA. If no certificate is set, the controller will use a self-signed certificate for
HTTPS connections to the web server. Some network setups can have issues with self-signed certificates, so if
your installation is affected, adding a trusted certificate can remove these issues.

Custom Web Interface
SeeCustom Pages for details.

Custom Command Line Parser
Choosing "Parse command line submissions as Lua Commands" will automatically run commands entered into the
command line as Lua trigger scripts, otherwise an additional parser script is required, see Command Line for details.

Web Interface Access
Access to the controller's web interface can be restricted based on one of several Access Groups.

To add a user for the web interface, click the Add button. This will open a dialog which prompts for a username and
password, and aGroup Selection:

State User can access the state of the controller (Home, Project Status, Log, Output, Input, Network)
Control User can control the controller (Control)
Admin User can access advanced features (File Manager, Configuration)

When you add a user, they will appear in the User list within theWeb Interface tab, and will be able to access the
sections defined by their group level.

Note: The access levels don't grant access to lower levels, you should select all levels up to themaximum required
e.g. Admin should also have State and Control checked.

- 44 -

Custom Properties

Custom Properties
Custom properties can be used to store information about Fixtures, Layouts and Timelines which couldn't otherwise
be stored.

To Add Custom Properties

l Open the Custom properties tool from the Project toolbar.
l Select the object type (Fixture, Layout or Timeline) from the tabs across the top.
l Add a property name to the text box and click the add button.
l The property will be added to the selected object.

You can check the property has been added by navigating to the relevant section (Layout for fixtures and layouts and
Timeline for timelines) and select a fixture, layout or timeline.

The new property should be available as a text field in the properties display.

- 45 -

Pharos Designer User Manual

About
The About Tab contains details about the current version of Pharos Designer, the EULA and various other relevant
licences.

- 46 -

Reports

Reports
Designer can automatically produce reports to aid in producing documentation for the project:

These reports can also be used to adjust some data relating to some elements e.g. fixture name.

Report Types

Equipment

Lists all the fixtures used in the project. IncludingManufacturer, Model, Name, Number and Pan/Tilt properties.

Group

Lists all the groups in the project and the fixtures which are part of each group.

Layout

Lists all the fixtures on a specified layout. The complete fixture identification is shown complete with name, notes,
number, Layout position and rotation.

All Layouts

Lists all the layouts in the project with its number, name and size.

Patch

Lists the complete patch data.

- 47 -

Pharos Designer User Manual

Timeline

Provides a summary of each timeline. Use the pull-down to select the timeline. You can also filter this report so that
only presets, flags or both are shown.

All Timelines

Provides a summary of all the timelines in the project.

Trigger

Provides a summary of the trigger programming. Complete with user annotation.

Network

Lists all the Controllers and Remote Devices in the project.

KiNET

Lists all the KiNET power supplies that have been added to Controllers in the project.

Font

Lists the fonts used in Dynamic Text presets on timelines in the project.

All Scenes

Provides a summary of all the scenes in the project.

Report Spreadsheets
All the reports are presented in spreadsheet form and present an accurate account of the project programming that
updates as changes aremade, such that it always shows accurate data.

The reports can be sorted and reorganised. Right-click on the column headings to set/clear primary/secondary sorts.
Drag column headers tomove them, drag the header divider lines to resize them. These spreadsheet layout settings
are stored with the project.

Some columns can be edited within the Report Spreadsheet, and this will have a direct impact on the rest of the
project, including:

l Equipment:
l Name
l Number

l Group
l Number
l Name

l Layout
l Name
l Number
l X Position

- 48 -

Reports

l Y Position
l Angle

l All Layouts
l Name

l All Timelines
l Number
l Name
l Group
l Priority
l Hold
l Loop
l Release at End

l Trigger
l Number
l Name
l Description

l Network
l Number
l Name

l All Scenes
l Name

Exporting Reports
To export one or more of the reports for the show file, the Export tool can be used to select which reports to export.

l Select the reports that you want to include in the export. The first option can be used to Select and Deselect
All options.

l The compression option is used to decide which form of file compression you want to use out of: Zip, Tar or
Tar.gz

l Select where to save the exported reports to with the Browse button
l Click Export to save the reports to your chosen location, or Cancel to close the dialog box.

- 49 -

Pharos Designer User Manual

Printing Reports
The current report can be printed, by selecting the Print Report option.

This will open a System print dialogue.

- 50 -

Layouts and Instances

Layouts and Instances
There are two types of layouts available within a project, depending upon the controllers in use.

l Default Layouts - available for all controllers except the VLC /VLC+.
l VLC Layouts - Available when using a VLC or VLC+

Default Layouts
Within Layout there is the ability to createmultiple views for a project, either different sections of a project, or
different views of the same area.

Managing Layouts

New Layouts

The New button in the Layout menu bar will generate a new blank layout

Deleting Layouts

The Delete button in the Layout menu bar will remove the layout from the project

Managing Layouts

TheManage... dialog can be used to keep track of all the layouts in the project and open layouts that have been
closed. This dialog box also allows access to the properties for layouts that aren't currently active.

Duplicating Layouts
The duplicate button in theManage window will create an exact copy of the current layout with new fixtures.

- 51 -

Pharos Designer User Manual

You will be prompted to choose whether to create the new layout with new fixtures or instances of the original
fixtures (see below).

Layout Properties

The Properties... button in the Layout menu bar gives access to the properties of the current layout.

Name
Provide a name for the layout to aid identification

Size
Width and height options can be used to change the size of the layout.

The Snap size to Background Image can be used tomatch the layout size to the background image size.

Background Image And Mode
Select an image to be used in the background, such as a fixture plan.

Backgroundmode can be used to define how the image is displayed.

Background Colour
Select the colour to display in the background of the Layout.

This colour is also used in Scene, DALI Scene and Simulate.

Grid Settings
Grid colour sets the colour of the grid pattern

Grid Spacing defines the number of units to space the gridlines apart.

Grid subdivisions defines the spacing of theminor gridlines

- 52 -

Layouts and Instances

Show grid makes the grid visible or invisible

Snap to grid defines whether fixtures should automatically snap to the grids intersections.

Show Minimap
A minimap can be used to help navigate large complex layouts.

Theminimap allows you to zoom in/out andmove around the layout while showing a smaller version of the layout:

Instances
Instances can be used with Layouts to add a single fixture to the Layout multiple times on different layouts. This
allows the programming to be seen on all layouts where the fixture exists.

Instances can also be used wheremultiple fixtures are to be controlled by the same control channel. Adding an
instance in this case will ensure the fixtures simulate correctly to produce themost accurate visualisation.

Managing Instances

Creating Instances

There are various ways to create fixture instances:

l Right click > New Instance will create a new instance on the same layout
l Copy and Paste as Instance (available in right click menu) can be used across different layouts
l A whole layout can be regenerated with instances by selecting to duplicate with instances.

Removing Instances From The Layout

Removing an instance is achieved in the sameway as deleting a fixture, but all instances of a fixture can be
removed without deleting the fixture from the project as a whole.

When deleting the final instance of a fixture, holding Shift will remove the final instance, but keep the fixture in the
project.

- 53 -

Pharos Designer User Manual

Locating Instances

Within the fixture browser, a circle icon indicates the presence of an instance of each fixture on the current layout.

No Circle No instances of the fixture within the project

Single Circle (Grey) One instance of the fixture, but not on the current layout

Single Circle (Black) One instance of the fixture, on the current layout

Double Circle (Grey) Multiple instances of the fixture, but none on the current layout

Double Circle (Black) Multiple instances of the fixture where at least one is on the current layout.

Hovering over the instance icon in the browser will highlight the instance/s on the Layout and a tooltip will indicate
the total number of instances and the number on the current layout.

VLC/ VLC+ Layouts
If you are using a VLC/ VLC+ in your project, it will be linked to a VLC Layout with the same name as the controller
e.g. Controller 1.

This layout can be used in exactly the sameway as a Normal layout to bring fixtures into the project and lay them out
on the VLC/ VLC+ Layout. The difference is that these fixtures elements relate to a single pixel in the real world and
therefore are exactly 1 pixel in size.

The VLC/ VLC+ layout will be used tomap any videos or matrix presets to, so the size of the layout should be set to
the size of the content output e.g. a 100x100px installation should have a 100x100 VLC Layout.

The fixture pixels should be laid out to match the real world as this layout is used tomap the programming onto the
fixtures.

Note: The fixture library will only show fixtures that the VLC/ VLC+ can support and the fixture browser will only
show fixtures on the selected controller.

- 54 -

Adding andOrganising Fixtures

Adding and Organising Fixtures
Once you have the layout set up as desired you can start populating it with the fixtures as required for the
installation:

Local Fixture Library
Pharos Designer ships with a limited Fixture Library which should be enough to get started with most simple shows.
The Fixture Library is grouped by manufacturer and then sorted in Alphabetical order. A generic manufacturer is
provided for standard fixtures such as Dimmers, basic RGB LEDs etc. and aGeneric DALI manufacturer contains
DALI personalities.

The library is fully searchable, so if you don't know themanufacturer of a fixture you can find it by searching for the
fixture name.

Library Groupings

In addition to themain library, which allows you to search for any of the fixtures in your local library.

Used
The Used view shows any of the fixtures that you have used in the current project, to easily reuse existing fixtures.

Recent
The Recent view shows fixtures that you have used in any project on your computer recently.

- 55 -

Pharos Designer User Manual

Favourites
You can Favourite fixtures or manufacturers that you want to always have easy access to from within the Library
view. To Favourite a fixture or manufacturer, Click the Star icon in the library.

Deleting Downloaded Fixtures

If you have downloaded fixtures and no longer require them in your library, you can delete either individual fixtures or
wholemanufacturers by right clicking on the fixture or manufacturer and selecting Delete.

This will remove the fixture or manufacturer from the library.

(Legacy) fixtures

Some fixtures within the library have a (Legacy) suffix. This means that there is a version of this fixture that supports
Direct Colour (on the LPC family of controllers).

The legacy fixtures automatically calculate values forWhite and Amber (where necessary), whereas the Direct
Colour equivalents allow these values to be set explicitly.

Online Fixture Library
If you can't find a specific fixture in the Fixture Library, youmay find it in themore comprehensive Online Fixture
Library (accessed from the button next to the Search box).

Adding Fixtures From The Online Fixture Library:

TheOnline Fixture Library contains all the fixture personalities currently available, to add these personalities to your
system:

1. Find the fixture(s) that you want to download, either using the search box or by navigating the folder tree
2. Select the fixture(s)

- 56 -

Adding andOrganising Fixtures

3. Click Download

This will download the personality to your system andmake it available within your local Fixture Library.

When you download a fixture it will be available in all future projects, and can be used offline.

If a fixture personality has been updated since being downloaded, the Update Available columnwill be checked to
indicate that a new version is available. This may be due to a change in the firmware of a fixture or an error in the
previous personality.

NOTE:If you need a fixture personality which isn't available in the Online Fixture Library, please contact support.

Fixture Icons & Scale
The following icons are used to differentiate between fixture classes:

Moving light - wash DALI ballast (see DALI)

Moving light - spot Conventional fixture

Moving light - mirror Non-dim (switched control channel) or con-
troller

Accessory (eg. scroller) Media server

Discrete LED fixture (to scale) Compound LED fixture (to scale)

Fountain jet fixture

The LED and compound LED fixture icons are drawn to scale (1cm:1pixel) so that, coupled with a correctly scaled
background image, the resulting layout and simulation is as realistic as possible. The other icons are drawn to a
standard size that, in most cases, will produce a realistic result. All placed fixture icons can however have their size
(scale) and even shapemodified using the Fixture Configuration pane.

When using the Simulator these icons instead render the fixture's output, even displaying the selected gobo and iris
settings for moving lights. Fountain jet icons do not simulate intensity, but rather fill the icon tomimic the water jet.

Populating The Layout
Simply choose amanufacturer, select the required fixture by clicking on it and then placing the fixture on the layout,
it will automatically be added to the Browser and grouped with all other fixtures of that type. Once placed, left click to
select it, a red highlight will indicate the current selection, see selecting fixtures. Right click to delete, group or
duplicate fixtures.

- 57 -

Pharos Designer User Manual

To Add A Fixture:
There are several ways to add a fixture to the layout:

1. Click on the fixture in the library and then click to place the fixture on the layout (the layout border will turn blue
to indicate you are in fixture placement mode)

2. Click and drag the fixture onto the layout and release themouse button to drop it (it will automatically be
added to the Browser)

When using Fixture Placement mode, you can pre-set any parameters for the fixture before placing it on the layout.

To Add Multiple Fixtures

You can continue placing fixtures once they are selected (as above) if the Auto Finish option is not checked, this can
also be toggled with Ctrl.

Click Finish to exit fixture placingmode.

To Duplicate A Fixture (create An Array):
1. Right-click on the fixture (on the layout not the Browser) to be duplicated
2. Select "Duplicate"

- 58 -

Adding andOrganising Fixtures

3. Select either "Rectangle" or "Circle"
4. Set the duplication parameters, see below
5. Press Next to set Fixture order or Press Finish to close theWindow

- 59 -

Pharos Designer User Manual

6. Select the order of the fixtures in the new array, based on the start position and the direction.
7. Press Next to set Auto Patch or Press Finish to close theWindow

- 60 -

Adding andOrganising Fixtures

8. Auto Patch can be used to patch a specified number of fixtures to a certain specified protocol, starting at a
specified universe number with a specified patch gap. By default, Controller is set to none, so select the con-
troller that you want to patch too.

9. Press Finish

For rectangular arrays, positive width and height values will place the copies to the right and below respectively,
negative to the left and above.

For circular arrays, select the radius, count (number of fixtures) and start angle- complete circles are created in this
way so, if arcs required, just delete those fixtures that are unwanted. The start angle determines where on the fixture
the original fixture sits (0o is at 3 o'clock).

Either array type also allows you to:

Create instances of the source fixture - This will cause all the duplicated fixtures to be instances.

Add to the same groups as the source fixture - This will cause the duplicated fixtures to be automatically added to all
the same groups as the original.

To Copy A Fixture Or Fixture Selection:
1. Select the fixture(s)
2. Press and hold Ctrl (Cmd)
3. Drag the copy to a new location on the layout and release themouse button to drop (with multiple fixtures,

their relative layout and numbering is preserved)

Note: pressing Ctrl after starting to drag will cause the selection to jump back to its original position and create a
copy of the selection under the pointer.

- 61 -

Pharos Designer User Manual

Alternatively, Cut, Copy and Paste functionality is provided on the FixtureManipulation Toolbar and the right click
menu.

To Delete A Fixture Or Fixture Selection:
1. Select the fixture(s)
2. Press Delete or right-click > Delete

Note that the fixture(s) will be completely removed from the project and all programming discarded.

To See Where A Fixture Is Patched:
1. Check 'Show patched on' on the toolbar.
2. Move the cursor over a fixture - the fixture's patch will be shown next to the cursor.
3. Pick a Controller from the drop down list on the toolbar to see all fixtures patched to it - fixtures patched to the

Controller will be shown in blue.

To Change A Fixture's Type:
It is possible to swap a fixture for a different type:

1. Select the fixture/s that you want to change
2. Right-click on a selected fixture
3. Choose Change Fixture Type
4. Select the fixture in the library that you want to change to

Note:Changing to a fixture that uses more channels will require patched fixtures to be unpatched, changing to a
lower channel count will retain the start address, and leave spaces between the fixtures.

DALI Fixtures

DALI fixtures/ballasts are added to the layout in the sameway as all other fixtures but they do not populate the
Browser and no groups are automatically created since DALI fixtures are programmed and controlled via dedicated
DALI Interfaces, see DALI.

Import Fixtures

You can useMainMenu > Import Object to import a fixture layout from aCAD application via a delimited text file, or
the Philips Color Kinetics VideoManagement Tool, see Import Objects.

Export Layout

You can useMainMenu > Export Object to export a fixture layout to a CAD application via a CSV file, see Export
Objects

Fixture Manipulation
The FixtureManipulation Toolbar can be used to perform somemanipulation functions on fixtures and groups of
fixtures.

- 62 -

Adding andOrganising Fixtures

Cut, Copy And Paste

Make copies of fixtures to paste on the same or a different layout. Cut can be used tomove fixtures from one layout
to another.

Duplicate

Create arrays of fixtures (see above)

Remove From Layout

Delete the fixture from the current layout, but keep all other instances.

Transform Tools

Selecting Transform Tools with multiple fixtures selected will activate the on-layout transformation options.

Scale Selection

The layout of the selected fixtures can be scaled in the X and/or Y direction using the handles round the edge of the
selection box.

Reflect

Mirror the selected group of fixture across the specified axis. This will move the selected fixtures, not create a new
set of fixtures.

Rotate

Rotate the selection, keeping the relative positions the same.

The angle is set by clicking and rotating the lever on the rotation handle.

- 63 -

Pharos Designer User Manual

The centre of rotation can bemoved by dragging on the centre of the rotate handle.

Align

Align the specified part of the selected fixtures. Options:

l Align Left edges
l Align Centres
l Align Right edges
l Align Tops
l AlignMiddles
l Align Bottoms

These options are available round the right and bottom edges of the selection box.

Distribute

Distribute the selected fixtures between the extreme fixtures either vertically or horizontally. Use this to create
evenly spaced groups of fixtures where the spacing isn't known.

Show VLC Fixture Centres

On a VLC/VLC+ layout, checking this option will display the centre of the fixture, which will then bemapped to a
pixel on the layout. This maintains the relative positions of the fixtures when they don't map directly onto the pixels.

Fixture Properties
When fixtures are selected from the Layout or the Browser, the fixture configuration section will be populated. If you
havemultiple fixtures selected, any shared properties will be displayed.

Fixture Identification

With a fixture selected the top two fields detail the fixture's manufacturer (manufacturer id) andmodel (model id),
they are for reference only and can not be edited.

- 64 -

Adding andOrganising Fixtures

Number And Name

Here you can enter a new name for the fixture, useful to helpmake the browser easier to navigate, and themeans to
change the fixture's unique user number.

Every fixture added to the project is assigned a user number which is used as a shorthandmethod of selecting it,
using the web interface's command line for example. Use the up and down arrows to change the number but note
that only available numbers are shown so youmay need to change the number of another fixture first to make that
number available. Note that the user number does not affect the order of the fixtures in the Browser and thus the
order used for transitions.

Notes

Below this are two fields for entering any comments about the fixture, useful for annotating the project's
documentation. These comments will appear in the fixture report and in exported fixture plans.

X And Y

Use these fields to set numerically the fixture's position on the layout

It is desirable to position the fixtures on the layout as accurately as possible to improve both the accuracy of the
programming (in particular pixel matrices created automatically from the layout) and the general neatness of the
project and simulation.

To nudge a fixture on the layout you can use the cursor keys to nudge the fixture selection up, down, left or right by
the amount set as the grid spacing. Alternatively, use the up and down arrows by each of the fixture's position fields.
Holding Shift while using the cursor keys performs a fine-nudge of 1px.

Angle

Set the angle of the fixture, setting these accurately will allow Pixel Matrices and Simulate to be as accurate as
possible.

Locked

Select "Yes" to prevent the fixture(s) from beingmoved or included in drag selections. Evidently, once locked, drag
selection is prohibited to select multiple fixtures to unlock so youmust use the Browser instead.

Width And Height

Use these to set the size of the fixture on the layout (1px : 1cm), this is particularly useful when the background
image is not to the same scale.

Shape

LED fixtures can be set to be circular or square tomatch the physical fixture, and this option can be used to change
between the two.

- 65 -

Pharos Designer User Manual

Gel Colour

For those working with gelled lights it is possible to simulate the gel’s colour so that the fixtures are rendered
correctly, press the Gel button and select the required colour via the colour picker.

This can also be used when a fixture is a single colour as these fixture personalities will be simulated as white.

Intensity

The fixture's dimmer curve andmaximum intensity can be set, use the Dimmer Curve drop-down to determine the
type of cross fade the intensity channel will perform and set aMaximum Intensity level, useful for balancing light
output.

DALI

DALI ballasts can be configured as allowed for by the DALI standard; Min Level (0>254), Max Level (0>254), Power
On Level (1>254) and Bus Failure level (No change, 0>254). The standard specifies a level range of 0>254 with 255
being used as a special casemeaning "no change", a mask if you like. Unlike DMX fixtures, these settings are
stored in the ballasts themselves and somust be uploaded separately, see DALI.

Ballasts can also have their default Fade Time and Fade Rate set in the configuration pane.

Emergency DALI ballasts will also have the option to the set the Prolong time in the configuration pane. More
information about emergency ballasts can be in the DALI topic.

NOTE: The default Fade Time and Fade Rate will be overwritten when new values are sent to ballasts during
playback from triggers or programming. This is due to the way DALI ballasts store this information.

Moving Lights

Moving lights can be customised for the project as one would on any sophisticatedmoving light console. Use Invert
Pan, Invert Tilt and Swap Pan & Tilt to normalise the way they respond to the position controls.

Customise the fixture’s gobo & colour wheels by pressing the Gobos or Colours buttons to open the Configuration
dialogs. Drag from the library onto the correct slots as required, press Ok to save or Cancel to abort.

Reset Properties

You can return a fixture to its library definition, losing local changes and thus restoring it to its defaults by selecting
Reset Properties. This is useful for updating fixtures on the layout with any library definition edits, forcing a redraw.
Local changes to a fixture's geometry (shape, size) will be overwritten.

You can also Reset all fixtures of a type from the Used section of the fixture library, by right clicking the required
fixture.

Show Patched Status
To see which fixtures are patched to each controller in a project, you can Check the Show patched on checkbox at
the top of the fixture browser. The dropdown can then be used to select the controller to display (None will show
fixtures which are unpatched)

This will highlight the fixture on the layout in the "programmed" colour (default: blue). See Project Properties.

- 66 -

Selecting fixtures

Selecting Fixtures
Keyboard Shortcuts

Layout

Ctrl+N Create a New Layout
Ctrl+D Create a duplicate of the current layout
Ctrl+I Show layout properties
Ctrl+A Select all fixtures
Double-left-click on a fixture Select all instances of the fixture
Ctrl+left-click on a fixture Toggles its selection
Alt+left-click on a composite fixture Select an element of a fixture
Alt+left-click on background + drag Select elements or fixtures using a lasso
Alt+left-click on fixture + drag Select elements or fixtures using a lasso
Left-click on background + Alt + drag Select whole fixtures using a lasso
Left-click on fixture + Alt + drag Constrain movement to one axis (horizontal or vertical directions)
Shift while selecting fixtures with a
box Selection order based on position, otherwise based on fixture number

Tab Select the next fixture by number
Shift+Tab Select the previous fixture by number
Ctrl+left-click while in add fixture
mode (blue border) Toggle the behaviour of Auto-finish

Alt+left-click while in add fixturemode
(blue border)

Add an instance of the last added fixture (or a new fixture if no fixture is
added yet)

Escapewhile in add fixturemode
(blue border) Finish adding fixtures

Escape otherwise Toggle last fixture selection
Ctrl+drag Create duplicates of the selected fixtures
Ctrl+Alt+drag Create instances of the selected fixtures
Shift while dragging fixture/s Disable fixture snapping
Delete/Backspace Delete selected fixtures

Shift+Delete/Backspace Delete selected fixtures from the Layout but keep the fixture in the
project, even if they no longer exist on a layout

Ctrl+Delete/Backspace Delete selected fixtures from the project

Shift+ 'Remove From Layout' Delete selected fixtures from the Layout but keep the fixture in the
project, even if they no longer exist on a layout

Ctrl+X Cut the selected fixtures
Ctrl+C Copy the selected fixtures
Ctrl+V Paste fixtures from the clipboard
Ctrl+Shift+V Paste instances of fixtures from the clipboard
Up/Down/Left/Right Nudge the selected fixtures by the grid spacing
Shift+Up/Down/Left/Right Nudge the selected fixtures by 1 pixel

- 67 -

Pharos Designer User Manual

Space+drag Pan the view
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Middle-click + drag Zoom into the drawn rectangle

Left-Click + drag + Shift Pressing Shift after starting a lasso selection will sort by the aspect
ratio (see here)

Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Ctrl+drag on Transform tool drag
handle Maintain aspect ratio of selection

Alt while dragging fixture/s Lock movement to a single axis

Browser

Delete/Backspace Delete selected fixtures, groups or pixel matrices
Ctrl+left-click Select multiple fixtures, groups or pixel matrices
Shift+left-click Select all fixtures, groups or pixel matrices between two selections.
Alt+left-click Deselects the contents of the group/pixel matrix
Up/Down Move current row indicator up and down, and select the row
Shift + Up/Down Move current row indicator up and down, and add the row to the selection
Ctrl + Up/Down Move current row indicator up and down, but don't change the selection
Left/Right Collapse/Expand current group
Space Select current row
Ctrl + Space Add current row to the selection

Browser
The Browser is themost powerful and flexible method of selecting fixtures. Click on a group heading to select all
fixtures within the group, expand a group by clicking on the plus sign and click on fixtures within to select individual
fixtures and, with compound fixtures, expand them to select the individual elements within. Fixtures and elements
are shown in red (by default) when selected.

Hold down Shift while clicking to select all contiguous groups/fixtures/elements between clicks and hold downCtrl
(Cmd onMac) while clicking to select multiple non-contiguous individual groups/fixtures/elements. Hold downCtrl
(Cmd) while clicking to deselect a selected group/fixture/element.

Clicking “in space” (anywhere on the Browser that isn’t a fixture) clears the selection.

The Browser also provides the interface to view and change the ordering of fixtures/elements within groups. This
order is used by the application to determine cue timing and effects skews, simply drag fixtures about within the
Browser to change this order.

- 68 -

Selecting fixtures

Layout
Only fixtures and elements can be selected using the Layout, to select groups youmust use the Browser. Fixtures
and elements are shown in the colour set within Layout Properties (default is red) when selected.

Ctrl (Cmd) work with clicking as described above to select/deselect and you can also lasso fixtures by clicking and
dragging around them, fixtures must be wholly enclosed to be selected.

When lassoing fixtures, by default a group created from the selection will be in numerical order, but holding Shift after
you have started dragging will cause the group order to be defined by the position of the fixtures within the lasso. The
rule for this being defined by the lasso's aspect ratio at the time the Shift key was pressed. The cursor will change to
describe the selectionmode:

Example:

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

All the fixtures are selected with a lasso from the top left and the cursor has a right-down arrow , the
fixtures will be selected in the following order:

1,6,11,16,21,2,7,12,17,22,3,8 etc.

Hold down Alt to select individual elements within compound fixtures. Hold down Alt and Ctrl (Cmd) to
select/deselect multiple elements.

Clicking “in space” (anywhere on the Layout that isn’t a fixture) clears the selection.

Pressing Esc will toggle the previous fixture selection.

Select Next/previous Fixture

With a single fixture selected, the Tab key will select the next fixture (next higher fixture number) and Shift + Tab will
select the previous fixture (next lower fixture number).

Select All Fixtures

Ctrl + A will select all fixtures.

Selection Modes

The Right click menu allows access to various selectionmodes:

Normal: overrides selection with selected/lassoed fixture/s

- 69 -

Pharos Designer User Manual

Additive: adds the selected/lassoed fixture/s to the selection

Subtractive: removes the selected/lassoed fixture/s from the selection

Invert: deselects selected/lassoed fixture/s that are selected, and selects selected/lassoed fixture/s that are
deselected

Context Menu
A context menu can be accessed by right clicking on a fixture, or the layout.

Be aware that when fixtures are selected the behaviour can be different.

l Right-clicking on a selected fixture will never change fixture selection; context menu actions apply to current
fixture selection.

l Right-clicking on an unselected fixture will always clear the current selection and select the single fixture that
was right-clicked. Context menu actions apply to fixture that was right-clicked (which is now the only selec-
ted fixture).

l Right-clicking on the layout never changes fixture selection, but will give access to the layout context menu.

Groups
Non-VLC Groups
Groups are an important concept to grasp as they servemultiple purposes:

Firstly, as you will see later, it is the rows of the Browser that make up the rows of the Timeline interface thus it is
convenient to gather fixtures/elements that are to be programmed together into a group to simplify this procedure.

Secondly, as the order of fixtures/elements within a group determines how programming and timing is rendered, it is
sometimes useful to makemultiple groups of the same fixtures with different ordering.

Thirdly, groups can be used to patch fixtures, as they are a list of the fixtures in order.

Finally, Groups can be used to set up intensity and RGB control zones in the Triggers window.

To Create A Group:

1. Select the fixtures you want to group using the Browser, the Layout or both - the order you do this in determ-
ines the order within the group

2. Right-click a selected fixture and choose New Group or press the New Group button at the top of the
Browser

3. Name the group which has been created in the Browser containing these fixtures

Note: if you are creating a group of fixture elements, youmust continue holding Alt when you right click to create the
group.

Alternatively:

1. Press New Group with no fixtures selected
2. Name this empty group
3. Drag fixture/element selections into the group from within the Browser - the order you do this in determines

the order within the group

- 70 -

Selecting fixtures

VLC/VLC+ Groups
On the VLC range of controllers, groups are used in a limited way to only be used for patching purposes. These
groups are created in the sameway, but are only present in Layout and Patch.

To Re-Order Fixtures In A Group

The order of fixtures in a group directly impacts the programming applied to them and the order that the fixtures within
them get patched.

When creating these groups, sometimes it can be possible to create them in an order that is not optimal.

If you right-click on the group, you can select Re-order to automatically sort the fixtures in the group numerically, or
in order horizontally or vertically.

- 71 -

Pharos Designer User Manual

Customising Fixtures
There aremultiple ways to customise fixtures:

l Fixture alias
l Custom Fixtures
l Fixture Templates

Fixture Alias
If you require a fixture which doesn't exist within the Library or Online Fixture Library, but is similar to an existing
fixture (e.g. RGB LED), you can create a fixture with the sameDMX footprint but different simulation options. To do
this:

l Select the fixture in the Library
l Right click on the fixture
l Select Create Fixture Alias

Here you can customise the Alias fixture with a different Name, Size and Shape.

Custom Fixtures
Should a completely custom fixture be required, this can be created based on an existing fixture by right clicking the
fixture in the library and selecting Create Custom fixture.

For more information on the fixture personality syntax, see Custom Fixtures, or contact Pharos Support.

Fixture Templates
Fixture Templates allow you to create an array which contains a number of fixtures as elements in a predefined
layout.

This allows you to create a reusable set of custom composite fixtures.

To Create a Fixture Template
Right click on a fixture in the library to create the template from that fixture, or right click in white space in the library
to choose within the wizard.

- 72 -

Customising Fixtures

Setup Template Properties

Enter a name for the template, and optionally set an element name.

Select the fixture to use as the elements within the template.

Setup Element Layout

Select the array parameters to create your template array:

Width/height - The size of the template's array

Flow - The order of the elements in the template, linked to the patch order of the elements within the fixture.

Start - The start point of the template order

Element width/height - The size of each element within the template

Horizontal/vertical gap - The spacing between each column/row

Count - The number of elements in the template

Stride - The number of elements in the direction of the Flow, adjusts the shape of the array without changing the
fixture count

Offset - The offset from the Start that the first element should take in the direction of the Flow.

- 73 -

Pharos Designer User Manual

Setup Patch Points

Patch spacing - The number of channels between the first channel of one element and the first channel of the next
element.

Elements per patch point - Themaximum number of elements in each patch point. This is limited to 1 universe worth
of output channels (e.g. 170 x 3 channel fixtures, 128 x 4 channels fixtures etc.)

Number of patch points - The number of patch points that the template should consist of.

A patch point is a section of the fixture that is patched in one go (e.g. multiple strings of nodes). Each patch point can
be amaximum of 512 channels.

To edit a template
A template can be edited by right-clicking on it and selecting Edit Fixture Template. It can be duplicated before
editing when slight changes are required.

When editing a template, the element count and namemust remain the same.

If a template has already been used within a project before it is edited, it must be Reloaded from the Library to update
to the edited version. This is done by going to the Used Library, right-clicking on the Template and choosing Reload
from Library.

To add a temple to the layout
Fixture templates are available within the Templates folder of the Fixture Library and can be added to a layout in the
sameway as any other fixture.

- 74 -

Pixel Matrix Editor

Pixel Matrix Editor
Keyboard Shortcuts

Ctrl+N Create new pixel matrix
Ctrl+D Duplicate the current pixel matrix
Ctrl+I Show pixel matrix properties
Ctrl+C Copy the selectedmedia
Ctrl+V Pastemedia from the clipboard into the current folder
Delete/Backspace Delete selectedmedia
Up/Down/Left/Right Nudge the selected items by 1 pixel
Space+drag Pan the view
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Spacewithmedia preview open Start/Stopmedia preview
Shift click on overlapping elements Open selector to chose which element to select
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

The window comprises 3 sections: On the left is the Browser, in themiddle the Pixel Matrix editing area, and on the
right are the Presets panes.

The Presets pane can be hidden with the Tool Toggle button

- 75 -

Pharos Designer User Manual

Pixel Matrices
Youmay create as many Matrices as you like and any fixture can be used as a “pixel” in any Matrix but clearly those
that can colour mix are the sensible choice, RGB LEDs being by far the best due to their large colour gamut and fast
response. That being said, the software will render colouredmedia as grey scale on intensity only fixtures.

To Create Pixel Matrices Automatically From The Layout (recommended):

1. Go to Layout
2. Select the fixtures you want to include in theMatrix
3. Press the New Pixel Matrix button on the Browser toolbar, the software will automatically create aMatrix with

the fixtures correctly positioned and the RenderWindow cropped to best fit
4. Name the Pixel Matrix

To Create A Pixel Matrix Manually:
1. Press New on the toolbar, a default 50x50 RenderWindow (the pale grey area) will be created
2. Populate the RenderWindow by dragging on fixtures from the Browser
3. Adjust the size of the RenderWindow by using theWidth & Height fields on the toolbar or the Crop button

(see below) to best fit
4. Name the Pixel Matrix using either the Properties window or right-clicking > Rename in the Browser

Typically you will place fixtures tomimic as closely as possible their actual layout, the software will compensate for
gaps and irregularities in amatrix so that media will be rendered correctly. Fixtures that have been rotated on the
Layout during Setup will be placed on theMatrix using this rotation although this is only relevant to compound
fixtures. Such fixtures can be rotated separately for eachMatrix by dragging them around when the cursor indicates
rotate mode, note that the first element of a compound fixture is displayed a darker grey for easy orientation.

To Remove A Fixture From A Matrix:
Right-click on the fixture on the Layout and select Remove Fixture.

To Break A Composite Fixture Apart Into Individual Pixels
Right-click on the fixture on the Layout and select Break Fixture.

Pixel Information

To find out information about a pixel, hover over the pixel, and a tooltip will appear showing the name, position and
angle for all pixels at the current position.

- 76 -

Pixel Matrix Editor

Cross-Hatch Pattern

Pixels which are potentially incorrectly positioned to either not receive any colour information (outside Render
Window) or the same colour information as another pixel (overlapping fixtures) will be identified by a cross-hatching
pattern:

Crop Size To Contents

Use the Crop size to contents button in theMatrix Properties dialog to trim the RenderWindow to fit the extents of
the fixture array.

Manual sizing of the RenderWindow is provided by typing in appropriateWidth and Height size values and it is
perfectly allowable to undersize the RenderWindow to achieve effects such as picture-in-picture or oversize it to
concentrate on a particular area of the importedmedia.

Import Pixel Matrix

You can use the Import button to import pixel layout from aCAD application via a CSV file, see Import Object.

- 77 -

Pharos Designer User Manual

Composition Editor
Keyboard Shortcuts

Ctrl+N Create new pixel matrix
Ctrl+D Duplicate the current pixel matrix
Ctrl+I Show pixel matrix properties
Ctrl+C Copy the selectedmedia
Ctrl+V Pastemedia from the clipboard into the current folder
Delete/Backspace Delete selectedmedia
Up/Down/Left/Right Nudge the selected items by 1 pixel
Space+drag Pan the view
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Spacewithmedia preview open Start/Stopmedia preview
Shift click on overlapping elements Open selector to chose which element to select
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

In Compositionmode, you can adjust the video composition for a VLC/ VLC+. The composition allows you to setup
the Content Targets for the VLC/ VLC+.

This Content Target is used to specify where video is output on the layout. Only fixtures within the Content Target
will get data frommedia or effects being played back on the VLC/VLC+.

- 78 -

Composition Editor

If you are using a VLC+ in your project, you will have access to 8 Content Targets within each composition (Primary,
Secondary, Target 3-8).

You will also be able to add Adjustment Targets to the controller which are configured to adjust the levels of Red,
Green, Blue and Intensity that are output to the area within themask.

Compositions
A composition is a set of Content Targets that can be stored together for a controller. When adding content to the
VLC/VLC+ you select the composition that the preset should use.

There are two types of object that exist on a Composition:

l Content Targets
l Adjustment Targets

Within the Compositionmode, the different types of Target are distinguished by their colour and border type.

Type Name Colour Border

Content Target

Primary Blue

Solid

Secondary Red
Target 3 Green
Target 4 Yellow
Target 5 Cyan
Target 6 Orange
Target 7 Maroon
Target 8 Brown

Adjustment Target Adjustment Target Grey Dashed

Note: The VLC/VLC+ must always have at least 1 composition, you will be unable to delete the final composition.

Content Targets
By Default, your VLC or VLC+ will have a single composition consisting of a Content Target, which is the size of the
VLC/VLC+ Layout.

If you are using a VLC+, you can add a Content Target to a composition, choose the Add Content Target option, and
draw the required rectangle on the layout.

There are 3 types of Content Target:

l Primary
l Secondary
l Targets 3-8

These Targets can be programmedwith most presets from the Built-In preset library.

Targets 3-8 are an advanced Project Feature that must be enabled in Project Features.

The Content Target defaults to the size of the VLC/VLC+ layout, but can be resized using the Content Target
properties:

- 79 -

Pharos Designer User Manual

Instance X and Instance Y
The position of the Target on the composition.

This property is applied per instance (where appropriate).

Width and Height
The size of the Content Target.

Fit to layout and Fit to fixtures
Automatically set the size to fit the Layout size or theminimum size to bound the fixtures on the layout.

Angle
The angle of this Content Target on the Layout.

Invert
Check this to invert the rotation.

This property is applied per instance.

Rotation X and Y
The centre of rotation of the Target.

Snap to centre
Sets the Rotation X and Y properties to be the centre of the Target

Mirror Instance
Mirror all content to this target instance horizontally.

This property is applied per instance.

Flip Instance
Flip all content to this target instance vertically.

This property is applied per instance.

Wrapping
The content target can be set to wrap horizontally or vertically. When the X or Y position of the target goes beyond
the edge of the layout, it will wrap round to the opposite side of the layout.

Blur Radius
The Blur of the Content Target allows you to soften the content displayed on the target. The larger the Blur radius,
the softer the image

Mask
Setting aMask will allow you to adjust the shape of the Target:

- 80 -

Composition Editor

None: The Target will be a rectangle of the specified size

Shape: This allows for roundness of the corners of the Target, with the option to feather the edges.

Image: This allows an image to be used for themask. A monochrome image works best here. Black portions will be
shown by the target, whileWhite portions will not be used.

Creating Content Target Instances

Multiple instances of a Content Target can be created to output the same data tomultiple areas in the composition,
by selecting a Content Target and choosing Create Instance at the top of the Layout. The new instance can have
different positions andmirror/flip settings, but will always be the same size as the original.

Adjustment Targets
Adjustment Targets apply to the whole controller and can be used to reduce (or increase) RGB and intensity of
presets that are played back under themask.

The settings for Adjustment Targets aremuch the same as for Content Targets, but also include:

Mask Gain
The Red, Green, Blue and Intensity levels for the fixtures under the Adjustment Target can be adjusted using the
gain settings. This works as amultiplier on that value. The gain can be anywhere between 0.00 and 2.00. The
multiplier acts on the output levels for the fixture, but these will be limited to the 0-255 range.

You can show and hide Adjustment Targets in theMapping view, using the icon in the left hand browser.

- 81 -

Pharos Designer User Manual

Media Presets
Media presets aremedia clips (video or JPG) that can only be played on Pixel Matrices and Content Targets.

Media is imported by clicking Create New in theMedia Presets pane. A dialog will open as shown above for you to
browse to wherever your media files are located, enable Thumbnails view to preview them. Designer supports most
commonmedia files, and it matters not at all the resolution of themedia clips as the software will up/down-scale as
required when theMedia Preset is placed on aMatrix during programming. In short, nomedia preparation should be
required. The first frame is used as their thumbnail in the directory, they can be named using the name textbox at the
bottom of the directory pane and they can also be deleted.

Importedmedia is automatically resized to fit a Pixel Matrices’ RenderWindow, the pale grey area of theMatrix.
Only fixtures/pixels within this RenderWindow will receive themedia which is why RenderWindows should
typically be cropped (see above) to force themedia to fit onto just the fixtures.

Media Limits

Themaximummedia limits are below:

Framerate 33fps - DMX refresh rate is 33Hz, so anything greater would be displayed at the source framerate
Bitrate 5Mbps ought to be sufficient for 1080p30, reducing to 1Mbps for 360p30

Resolution 1080p - Best results will be achieved by matching themedia resolution to the output resolution (PixelMatrix or Content Target)

Media File Formats

The following file formats can be imported as media clips:

l .asf
l .avi
l .divx
l .dv
l .f4v
l .flv
l .m2v
l .mov
l .mp2
l .mp4
l .mpe
l .mpeg2
l .mpeg4
l .mpg
l .wmv
l .jpg
l .jpeg

Media Preview

Double clicking on the thumbnail of a media preset will open theMedia Preview window. This allows you to watch
themedia clip that has been imported.

- 82 -

Media Presets

Replacing Media

If youmove themedia relative to the project file, you will need to replace the content. Right click on theMedia clip
and select Replace to reset the file path.

This can also be used to change themedia file associated with a particular clip within the project.

Designer will automatically search the selected location for any other missingmedia.

Custom Presets
Note:Custom presets are an optional feature, andmust be turned on from Project Features.

Select the Custom tab. Custom presets can only be played on Pixel Matrices.

Custom Presets use a Lua script to define an effect that can be played back on aMatrix. You can use this to create
effects that are not available as standard in Designer.

To create a new Custom Preset, press New in the Custom Presets tab on the right. This will open a script editor
dialog:

- 83 -

Pharos Designer User Manual

The script editor initially shows the framework of a custom preset. You can either enter the source yourself, or you
can load the source from a file using Import. Designer provides sample scripts which are located in Program Files at
\Pharos\Designer\resources\scripts\custom_presets.

After editing or importing a script, you compile it by pressing F7. If there are any errors in the script, they will be
reported in the Output tab. If there are no errors reported, it is advisable to run the script to preview the preset. To run
the script, use Run (F5). If the script takes a long time to run, or appears to have got stuck in a loop, use Stop
(Ctrl+F5) to stop execution.

IMPORTANT:Whenworking in the script editor, if your script does have an infinite loop, you are able to stop it
executing by pressing Stop (Ctrl+F5). However, outside of the debugger, there is no such way to stop the execution
of a badly-behaved script. This will result in Designer locking up and will have to be shut downmanually. Youmust
ensure that your scripts do not have such errors in them.

A preview of the preset will be generated and shown on the right of the script editor. You can start and stop the
preview and step forwards and backwards with transport controls below the preview. Altering the period below the
preview and pressing Run (F5) again will generate the preview again with the specified period.

If the preset defines any properties, after the script is successfully compiled, suitable editors for these properties will
be displayed below the preview. You can change the values of these properties and rerun the script using Run (F5) to
observe the effect of those properties in the preview.

Once you are happy with the preview, close the script editor. The preset can now be placed onMatrices on a
timeline.

You can edit the source of the custom preset script again by selecting it in the Custom tab on theMapping pane and
pressing Edit. If you edit a preset that is already used on a timeline, any changes youmake will be applied to
everywhere where the preset is used.

Refer to the script editor documentation for more information on editing scripts, the custom presets programmers
guide for help on creating a custom preset from scratch and custom preset examples for examples of custom
scripts.

- 84 -

Patch

Patch
Keyboard Shortcuts

Ctrl+N Show AddUniverse popover
Ctrl+A Select all patch records
Delete/Backspace Delete selected patch
0-9 Type a universe number and the view will scroll to it after a short delay
Page Up/Down Scroll to previous/next universe
Ctrl+Tab Switch to the next protocol
Ctrl+Shift+Tab Switch to the previous protocol

Once you have created your Layouts and added your fixtures you need to patch them, that is to say connect them to
real fixtures via the appropriate Controller (LPC 1, 2, 4 or X, VLC or TPC), interface (port), protocol and address.
Patching is optional for programming and simulation but fixtures must be patched eventually for the LPCs to control
them, including using Output Live in the Simulator.

Before we cover patching in detail let's look at some of the terms used:

Patch Terminology

Term: Description: For more
information:

DMX A digital serial control protocol for entertainment lighting. Officially called
DMX512-A, it was developed by the USITT and has become the standard pro-
tocol for entertainment lighting control using the RS485 physical layer.

DMX512

RDM Remote DeviceManagement, an extension of the USITT DMX512 protocol that
supports bi-directional communication with dimmers & fixtures.

RDM

eDMX A shorthand term for DMX-over-Ethernet protocols, see KiNET, Art-Net, Pathport
and sACN below.

KiNET A proprietary Ethernet control protocol developed by Color Kinetics (now Philips
Color Kinetics) used to control only their Ethernet PSUs.

Art-Net A DMX-over-Ethernet protocol developed by Artistic Licence and widely used in
the entertainment industry to distributemultiple universes of DMX data.

Pathport A DMX-over-Ethernet protocol developed by Pathway Communications and
widely used in the entertainment industry to distributemultiple universes of DMX
data.

sACN Streaming ACN (Advanced Control Network), a DMX-over-Ethernet protocol
developed by ESTA to distributemultiple universes of DMX data.

ESTA

RIO The Pharos Remote Input Output 80/44/08 can output up to 96 channels of DMX
per unit. See here for more information on patching to a RIO.

DVI Digital Video Interface, a standard for the delivery of digital video data to computer
monitors. Used by certain LED manufacturers (for example Barco andMartin Pro-
fessional) to drive their LED controller products.

DALI Digital Addressable Lighting Interface, a digital serial control protocol for archi-
tectural lighting. Developed by Philips Lighting it has become a standard: IEC
60929. DALI fixtures are not patched using this window, see DALI.

DALI

Universe A common term given to a single DMX data link or port. A DMX universe carries

- 85 -

http://tsp.plasa.org/tsp/documents/docs/E1-11_2008R2013.pdf
http://www.rdmprotocol.org/forums/
http://tsp.plasa.org/tsp/documents/docs/E1-31_2009.pdf
http://www.dali-ag.org/

Pharos Designer User Manual

512 channels of control data each with 8 bit resolution. A single dimmer will use
one channel while more complex fixtures will usemultiple channels as required.

Port The KiNET equivalent of a universe.
DMX Address The term used to determine which of the 512 control channels of a DMX universe

a fixture should look at to take its own control data. This "start address" must be
set on the fixture or dimmer rack itself as well as patching the control system.

Patch Window
This window comprises twomain sections, to the left is the Browser, with the rest of the window being a graphical
representation of a protocol's ports or universes. The number of address columns displayed per row can be changed
using Preferences.

If you are using an LPC X, VLC or choosing to output eDMX from an LPC or TPC then youmust use the Protocol
Properties dialog to configure these protocols, see Controller Protocols.

Patch Columns
Use the Controller column to select the Controller for patching. Add Universes to the project with the Add Universe
dialog. Set properties for eDMX protocols with the Protocol Properties dialog and set your Patching Preferences with
the Preferences dialog.

Use the other columns to select the required protocol and universe/s to determine which universe/s is/are displayed
in themain working area.

Note: The patch columns width can be adjusted to display long value on your screen, by clicking and dragging on the
dividers

Universes
By default only the DMX ports of an LPC are configured, TPCs LPC Xs and VLCs have Art-Net Universe 0
configured by default.

- 86 -

Patch

To add eDMX universes:

1. Select the Add Universe dialog
2. From the Protocol Dropdown, select the protocol you want to setup.
3. For Art-Net:

You can also enter the Universe using the Net/Sub-Net/Universe notation e.g. 0/0/0 = Art-Net Universe 0,
selecting All universes will add all 16 universes in the specified Net/Sub-Net.

l In the Universes box type the required universes e.g. 1,
l You can separatemultiple universes with commas e.g. 1, 5, 7,
l You can select a range of universes with a hyphen e.g. 1-5,
l These can be combined e.g. 1-4, 8,10

4. For sACN and Pathport:

l In the Universes box type the required universes e.g. 1,
l You can separatemultiple universes with commas e.g. 1, 5, 7,
l You can select a range of universes with a hyphen e.g. 1-5,
l These can be combined e.g. 1-4, 8,10

- 87 -

Pharos Designer User Manual

5. For KiNET Power Supplies:

l You can add a virtual power supply from the included library of power supplies or add a power supply
that exists on the network that you are connected to.

l To add a virtual power supply (the default option), simply select the type of power supply from
the Type dropdown list. Enter the quantity that you intend to use. Click add at the bottom of the
dialog.

l To add a Custom Power supply, you can select "Add Custom type..." and enter the required
Name, Port count, KiNET Version and select whether it is Chromasic or not.

l To add an existing power supply, Select the "Add power supply from the network" checkbox.
Click Refresh to display all power supplies visible to Designer on your network. Select the
power supply/ies you want to add to the project and click add.

l If you add a virtual power supply, you will need to set its IP Address. This can be done from the table in
the KiNET tab. Double clicking on an IP Address will allow you to change it, or use the Assign
IP Address option to link the virtual power supply to a power supply discovered on the network.

l When you add a KiNET power supply to a project, it is initially linked to a specific controller, but you
can patch different ports to different controllers using the Show All button in the top right corner

Patching DMX & eDMX fixtures
Simply select one or more fixtures in the Browser and drag them onto the required start address of the graphical
representation. Right click on a patched fixture to unpatch it or clear the entire universe/port, drag it to move it
(change its address). Fixtures may be patched tomultiple addresses and universes/ports. Patched fixtures are
shown in blue in the Browser, unpatched black.

To Patch A Fixture:

1. Select the relevant Controller, Protocol and Universe/s.
2. Scroll down to the required Universe.
3. Select the fixture in the Browser
4. Drag and drop the fixture onto the desired start address

- 88 -

Patch

To Patch Multiple Fixtures:

1. Select the relevant Controller, Protocol and Universe/s.
2. Scroll down to the required Universe.
3. Select a group of fixtures in the Browser
4. Drag and drop the group of fixtures onto the desired start address of the first fixture in the selection
5. If you select more fixture than will fit on the selected universe, or patch them such that the selection runs out

of space on the universe, the fixtures will be automatically patched to the subsequent universe.

To Patch Fixtures with a Gap between them

Sometimes it is useful to patch a group of fixtures with a spacing between them, such as when you are controlling an
RGBW fixture as separate RGB andWhite fixtures.

1. In the Preferences option on the Patch Toolbar, change the New Patch Gap setting to be the number of chan-
nels gap between the fixtures

2. Patch a group of fixtures as normal.
3. There will be the specified gap between the fixtures.

To Change A Fixture's Address:

1. Select the relevant Controller and Protocol.
2. Scroll down to the required Universe.
3. Select the fixture(s) on the universe layout and simply drag them to a new address - to move them to a dif-

ferent protocol youmust unpatch (see below) then repatch.

Fixtures may be patched to as many locations and universes as is required although typically a fixture will only be
patched to one unique address. The Designer software will prompt you with a warning dialogue should you attempt
to patch a fixture that is already patched, select Continue or Unpatch Existing as required. This prompt can be turned
off if it proves aggravating.

However, you can not patchmore than one fixture to the same address; a DMX channel can only be controlled by
one parameter so fixtures can't overlap at all. If you drag one fixture onto another the incoming fixture will highlight in
red to alert you that this address is already occupied. If you go ahead and drop it there anyway the software will
prompt you whether to continue and unpatch the existing fixture(s) for you, select Unpatch to proceed or Cancel to
abort. Again, this prompt can be turned off.

Some fixtures, for example the Vari*lite VL5, need to be patched twice since they have two distinct patch points, one
for the intensity control (patched to the dimmer rack) and another for the fixture's automation controls.

- 89 -

Pharos Designer User Manual

To Patch A Multiple Patch Point Fixture:

1. Locate the fixture in the Browser and expand it by pressing the plus sign to reveal its patch points
2. Select the relevant Controller and Protocol.
3. Scroll down to the required Universe.
4. Drag and drop the first patch point onto the desired start address
5. Repeat for the other patch point(s)

or

1. Patch the entire fixture as one
2. Drag the patch points apart to their desired addresses

To unpatch a fixture or multiple fixtures:

1. Select one or more fixtures using the Browser or the universe layout
2. Right-click and select Unpatch

To clear patch from a universe:

1. Select the relevant Controller and Protocol.
2. Scroll down to the required Universe.
3. Use the Unpatch button in the Universe header to remove all fixtures from the universe.

To copy a universe's patch:

1. Select the relevant Controller, Protocol and Universe/s.
2. Scroll down to the required Universe.
3. Press the Copy button in the Universe header.
4. Select the target Controller, Protocol and Universe
5. Press the Paste button in the Universe header.
6. Continue pressing paste on other universes if necessary.

To Cut/Copy Multiple Universes' Patch:

l Use the Patch columns to select the required univere/s
l Right click and Cut/Copy
l Go to the new Univere/s
l Right-click and paste the Patch

To highlight a fixture :

1. Select one or more fixtures using the Browser or the universe layout
2. Press the Highlight button, the fixture(s) will come on to their highlight defaults (typically open white)
3. Press Highlight again to turn off or select other fixtures to highlight

NOTE: The appropriate Controller must be on the network and correctly associated to highlight fixtures. Fixtures can
also be highlighted from Layout.

Note: If your controller/s is/are password protected, you will need to login to the controller/s from the Network Mode

- 90 -

Patch

RDM Device Discovery
RDM Devices can be discovered on the DMX port of a LPC or TPC+EXT or on an Art-Net universe.

Select the required controller/universe and press 'Discover'/'Discover on port 1/2' to find RDM-capable devices
attached to the selected output. The Discover button is only enabled if the selected Controller is associated with a
physical Controller, that Controller has been found on the network and the current project has been uploaded to the
Controller

The window that opens will display any RDM capable device connected to the selected Output, once the Discover
button is clicked.

To identify a device, select the device and toggle the Identify button.

To readdress a device, enter a new value in the Start Address column.

To set a different Personality, enter a new value in the Personality column.

Note: If your controller/s is/are password protected, you will need to login to the controller/s from the Network Mode

Patching fixtures to a RIO

Youmust first add a RIO to your project. You will then be able to select RIO DMX as a Protocol in the Add Universe
dialog.

Assigning a DMX universe to a RIO will automatically configure the Serial port to be a DMX out port.

The RIO is capable of outputting 96 channels of DMX. Any channels patched to a RIOwill subtract from the
maximum channel output capacity of the Controller. The RIO and Controller must be on the same network.

- 91 -

Pharos Designer User Manual

Patching fixtures to an EDN

Youmust first add an EDN to your project. You will then be able to select EDN as a Protocol in the Add Universe
dialog.

The EDN will have a number of ports available to patch fixtures to. Any fixtures patched to these ports will used
channels from the capacity of the selected controller.

Note:Multiple controllers can output to different ports on the EDN, provided they are in the same project.

Used Channels
In the controller column of the patch universe view is an indicator of the number of used and available channels for
each Controller.

When the Controller is an LPC X, and if you have not associated the controller with a physical device, then you are
allowed to patch fixtures up to the capacity you have chosen (see Controller Association).

However, when you associate an LPC X with a physical device, you will only be able to associate to devices which
have a capacity equal or greater than the patched fixtures. After associating with a device, you will be unable to
exceed the capacity of that device.

Show patch location
When a fixture is selected, in the fixture browser, or in the patch table, the fixture namewill be given at the top of the
view, with the option to show each patch location for the fixture.

- 92 -

Patch

eDMX Pass-Through
When using an LPC in a project it is possible to allow eDMX from another eDMX source to be passed through to the
controller’s DMX ports. With an LPC selected, the bottom of the Protocol Properties dialog will show the eDMX
Pass-Through settings. Select which universe the DMX port will be transmitting. Note that with an LPC 2 you'll be
able to choose a different universe for each DMX port on the controller. There is also the option to auto-revert to the
project’s output if eDMX isn't received for a specified amount of time.

Note: only Art-Net and sACN are currently supported for eDMX Pass-Through.

eDMX Pass Through Merge

If sACN is being used for eDMX Pass Through andmultiple sources are received, the controller will use the Source
with the Highest priority.

If multiple streams are received with the same priority:

l If there are exactly 2 streams, the controller will do a HTP merge (per channel). Meaning the highest level for
each channel from either source will be used.

l If more than 2 sources are received, then all streams are dropped.

Art-Net Output Customisation

Casting

There are three options for the casting of Art-Net Data, which refer to how the controller outputs the data:

l Automatic
l Broadcast
l Unicast

Automatic will utilise ArtPoll messages to determine which IP Addresses to Unicast the Art-Net data to

Broadcast will output the Art-Net data so that any devicemay receive it

- 93 -

Pharos Designer User Manual

Unicast allows you to specify the destination for the Art-Net universe.

In Automatic mode, a controller with less than 30 universes of Art-Net patched will broadcast all data until a device
requests unicast for a specific universe. Controllers with more than 30 Art-Net universes patched will only unicast
data to devices requesting universe data and will not automatically broadcast.

There is the option to 'Disable Art-Net Broadcast' for a controller. The controller will still unicast data to devices that
request it. There is also the option to 'Always Broadcast' on a per universe basis. This will force the controller to
always broadcast that universe's data. 'Always Broadcast' will override the 'Disable Broadcast' option.

ArtPoll

It is possible to disable ArtPoll messages from the Protocol Properties. This means the controller will not output
thesemessages for Art-Net discovery andmanagement of casting. This requires data to be broadcast or for unicast
addresses to be configured.

Syncing

Within the Protocol Properties, is the option to enable Art-Net Sync, which can be used to ensuremultiple Art-Net
receivers stay in sync (if they are capable of receiving this)

sACN Output Customisation
When configuring sACN Universes, it is possible to set:

Casting

Each universe can be configured toMulticast (the default) or Unicast (send to a specific IP Address).

When setting to Unicast, multiple IP addresses can be set:

Note:The controller will always output "Discovery" messages to theMulticast Discovery address every 10 seconds,
so sACN tools can see the controller.

- 94 -

Patch

Priority

Each Universe can have its priority set within the Universe header. This is used by any receivers to determine which
data to output if it receives multiple data streams.

Each channel can also have a priority set, allowing further customisation of how receivers will handle data from
multiple sources.

KiNET Output Customisation
Within the Protocol Properties, is the option to enable KiNET Sync, which can be used to ensuremultiple KiNET
receivers stay in sync (if they are capable of receiving this).

Patching DVI Fixtures (LPC X)
To output data using the DVI port youmust first create a pixel matrix that matches the LED controller's pixel map.
Once this has been done, use the Pixel Matrix pull-down on the Protocol Properties dialog to select whichmatrix will
be output via the DVI port and select an X & Y offset as required. Any programming for the fixtures in the pixel matrix
will now output on the DVI port, not just programming applied directly to the pixel matrix.

The LPC X's DVI port is set to a fixed 1024x768@ 60Hz resolution which is compatible with most LED controllers.
The LED controller (or monitor) MUST be connected when the LPC X boots or resets for the port to become active.

- 95 -

Pharos Designer User Manual

DALI
Keyboard Shortcuts

Ctrl+N Create a new DALI Interface
Ctrl+I Show DALI interface properties
Escape in SceneMode Toggle last fixture selection
Ctrl+0 in SceneMode Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ in SceneMode Zoom in
Ctrl+- in SceneMode Zoom out
Ctrl+ mouse wheel in SceneMode Zoom in and out
Middle-click + drag in SceneMode Zoom into the drawn rectangle
Alt+ mouse wheel (Shift+ mouse
wheel) in SceneMode Scroll Horizontally

By default this Mode is not available, but will become active if a DALI ballast or RIO D is added to the project.

Overview
The Digital Addressable Lighting Interface (DALI) is a digital serial control protocol for architectural lighting.
Developed by Philips Lighting it has become a standard: IEC 60929. DALI differs from DMX in a number of important
ways:

l Only 64 ballasts per DALI bus (interface)
l Only 16 groups per interface
l Only 16 scenes per interface
l Ballast configuration (including address), groups and scenes is uploaded to and stored in the ballasts them-
selves

l Topology-free DALI bus operates at very low data rates
l Command-based protocol, ballasts perform fades andmaintain levels
l Only certain discrete fade values are permitted

As a result the DALI protocol is not suitable for rendering effects andmedia, programming is restricted purely to
recalling lighting levels via the Set Level and DALI Scene presets, see DALI presets.

DALI Ballasts
DALI Ballasts are added to the project in the sameway as DMX based fixtures, from the fixture library within Layout.

Ballasts are available that support DALI Type 0 (intensity control) and the following colour control modes from
DALI Type 8:

l XY Colour Control
l Tc Colour Temperature Control
l RGBWAF Colour Control

These DALI Type 8 ballasts can be controlled within Pharos Scenes (as opposed to DALI Scenes).

The Fixture library also includes composite DALI fixture personalities which usemultiple addresses to control
different parameters e.g. Intensity and Colour Temperature. Each parameter can be individually patched to a
DALI address.

- 96 -

DALI

DALI Interfaces
Each RIOD or TPC with EXT added to the system supports one DALI bus (up to 64 ballasts) and is assigned to a
DALI interface within Designer. Due to the nature of the DALI protocol, these DALI interfaces are insular affairs with
each having its own unique set of ballasts and groups. Each interfacemust be configured and uploaded to
individually.

When you add a RIOD or TPC with EXT you select which DALI interface it should be assigned to. Only one device
can be assigned to each interface. Use the Add Interface button on the DALI toolbar to add another. Use Remove
Interface to remove an unwanted one.

Up to 100 DALI interfaces can be added to a project, taking into account the remote device limits.

DALI Addressing & Grouping
Each DALI interface is configured separately, use the pull-down on the DALI toolbar to select an interface for
configuration:

The Addressing table allows you to link DALI ballasts within the project with an address on the DALI bus. You are
also able to set the address of the physical ballasts and assign them to groups. The device commands are available
to manage the ballasts on each DALI interface.

Device Commands

IMPORTANT:Designer must be connected to the Controllers with RIODs or EXT, the project file must have been
uploaded at least once and the DALI ballasts must be active to perform these operations.

- 97 -

Pharos Designer User Manual

A DALI ballast internally stores its address, this is a number between 1 and 64. It is also possible that the ballast has
never been addressed so it does not have an address. These commands are used to discover and address DALI
ballasts:

Find Addressed Ballasts
This queries the ballasts attached to the device and reports all addressed ballasts found, an icon is added to each
address cell when the corresponding ballast has been found.

Address Ballasts
This finds all ballasts without an address and randomly assigns them a free address. It will not change the address
of any already addressed ballasts.

Readdress All Ballasts
This will clear the addresses of all ballasts and then assign every ballast a random address.

Resolve Clash
It is possible that two ballasts can have the same short address. If that happens the ballasts clashing are shown
with a red icon. The resolve clash button will move the clashing ballasts to a random address that is unused by any
other ballast.

Identify Emergency Ballasts
Send all emergency ballasts a command to indicate their address on themulticoloured LEDs on the fixture. Whilst
this is enabled the commandwill be sent every 10 seconds.

To Manually Readdress A DALI Ballast:
1. Select the ballast icon in the current address cell
2. Drag it to the target (preferably empty) address cell

The ballast is readdressed to the target cell.

To Highlight A Ballast
Select an address cell (containing a ballast icon) and press Highlight to bring this ballast to full level, select another
cell to highlight instead or press Highlight again to turn off.

Patching DALI Fixtures

When you add DALI fixtures to your layout these "abstract" ballasts are assigned to the Unpatched DALI group in
the Browser andmust bemapped to real DALI interfaces and ballasts using this window.

Once you have discovered and addressed all the real DALI ballasts for each interface (if more than one) you can then
patch your DALI fixtures to them simply by dragging them from the Unpatched DALI group onto the required
interface and address cell. As each DALI interface is assigned DALI fixtures, the Browser refreshes to reflect these
changes. The Unpatched DALI group will become empty once all the DALI fixtures in the project have been patched.

It is of course possible to patch your DALI fixtures blind in advance of being connected to the real ballasts. The patch
is stored with the project data and not on the DALI ballasts.

- 98 -

DALI

DALI Groups

Unlike other groups in Designer, DALI groups are a property of the real DALI interface not an abstract collection of
fixtures, and there can only be 16 DALI groups per interface. The right-hand side of the addressing table allows you
to add and define groups for each interface:

To Add A DALI Group:
1. Press the New Group button
2. You can give the group a name by typing in the pre-selected name field
3. Select which ballasts are to be amember by clicking the fixture's address in the corresponding group column

The DALI group is added to the Browser and group configuration data ready to be uploaded into the ballasts.

To Delete A DALI Group:
1. Right-click on the group in the Browser
2. Select Delete

The DALI group is removed and the group configuration data updated ready to be uploaded into the ballasts.

If groups have already been programmed onto the DALI fixtures you can press the Discover Groups button to
automatically populate group information from the fixtures on the interface.

DALI Scenes
In Designer's implementation, DALI scenes are common across DALI interfaces, change themode from Interfaces
to Scenes (on the top left):

The Browser and Layout are displayed so that you can select the DALI fixtures and groups. On the right are the DALI
scenes library and the Intensity controls.

- 99 -

Pharos Designer User Manual

There can be up to 16 DALI scenes which can contain programming for some or all of your DALI fixtures, even if
spanning different DALI interfaces. In general you should include programming for all your DALI fixtures in each
scene since you can determine when creating timelines which fixtures or groups should run the scene by dropping
the DALI scene on the appropriate timeline row, the choice is yours though.

Note:DALI Type 8 ballasts can only be controlled in Scenes (not DALI Scenes)

To Create A DALI Scene:

1. Press the button next to a new scene to create the scene.
2. Name the new scene
3. Select the DALI fixtures or groups
4. Set the required level (0-254), the fixtures on the layout will simulate these levels

If DALI RGB Ballasts are being used, you will also be able to set the colour of the ballast.

The DALI scene is added to the folder and scene configuration data is ready to be uploaded into the ballasts.

To Delete A DALI Scene:

1. Press the button next to the scene to be deleted

The DALI scene is removed and scene configuration data updated ready to be uploaded into the ballasts.

To Edit A DALI Scene:
1. Select the scene in the folder
2. Select the DALI fixtures or groups
3. Adjust the levels

The DALI scene is edited and scene configuration data updated ready to be uploaded into the ballasts.

To Remove A DALI Fixture From A Scene:
1. Select the scene in the folder
2. Select the fixture to remove

3. Press the Knockout button to the right of the Intensity controls

The DALI scene is edited and scene configuration data updated ready to be uploaded into the ballasts.

Emergency Ballasts
Emergency DALI ballasts are set-up in the sameway as standard DALI ballasts and support Highlight and Re-
Addressing.

- 100 -

DALI

Emergency tests may be scheduled for all emergency ballasts in a project via the Emergency Ballast Tests tab on
the right of the DALI window. You can override project settings on a per interface basis by using the emergency
settings in the Interface Properties tab. Function and Duration tests can be scheduled independently of each other
on a daily, weekly, monthly or yearly basis. The time of day that the tests run can also be specified. Choosing to test
alternate ballasts will test every other patched ballast - the remaining ballasts will then be tested once the initial test
is complete.

Test information is stored on thememory card of the controller responsible for that interface. This information can
also be viewed via the web interface.

Upload Configuration
Once you have configured all your DALI interfaces and programmed all your DALI scenes youmust upload the
configuration to each DALI interface in turn so that this data can be stored on the DALI ballasts themselves. Select
an interface and press the Upload Configuration button, a progress bar will track this rather slow procedure.

- 101 -

Pharos Designer User Manual

Scene
Keyboard Shortcuts

Ctrl+N Create a new Scene in the current folder
Escape Toggle last fixture selection
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Middle-click + drag Zoom into the drawn rectangle
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Scene allows you to create single effects on any fixture within the project. These Scenes can be used later within
Timelines or played back individually using triggering. These Scenes can control the following parameters either with
static values or wave based effects:

l Intensity
l Colour
l Beam Shaping
l Position
l BeamQuality
l Control Parameters
l Effect Macros
l DALI (including RGB)

- 102 -

Scene

Note:Scenes are not available for the VLC/VLC+

Scene Management
Scenes aremanaged in the Scene browser in the right hand section of the Scene View.

From here you can create new scenes, delete scenes and sort scenes into folders.

To Create A New Scene

l Choose the New button in the Scenemanager
l Give the Scene a name and press Enter.

To Delete A Scene

l Select a Scene in the Scene Browser and press Delete/Backspace

or

l Select a Scene and press the Delete button in the Scene browser

To Create A New Scene Folder

l Press the New Folder button and Name the new folder.
l Scenes can then be created to the folder

Scene Properties

l Number - Each Scene has a unique number to refer back to it later on, which can be changed here
l Group - Scenes can be placed in a group to allow multiple Scenes to be handled together within Actions.
l Clear Editor - This option removes the currently selected Scene from the Scene editor and from Simulate.

The transition options below are a default and can be overridden when placed on a timeline. If the scene is run from
an action, these default values will be used.

l Fade - the time taken to crossfade into this Scene

l Skew - Various different skews can be selected to alter how individual fixtures (and elements within fixtures
in the case of compound fixtures such as battens and tiles) behave within the fade, default is None which
means that all fixtures/elements fade together. Use skews to create “multi-part” fades so that
fixtures/elements fly in one by one for example (set to Individually) - youmay have to increase the fade time
to clearly perceive the skew especially with lots of fixtures/elements.

- 103 -

Pharos Designer User Manual

l Direction - The ordering of a skewed transition depends on the fixture/element ordering within the group. The
Skew Direction drop-down provides further ordering options such as Forwards and Backwards for additional
flexibility. Additional groups can be created with different fixture/element ordering to achieve other skewed
effects.

l Repeat - Specifies the number of adjacent fixtures/elements over which a skewed transition is applied,
default is All meaning that the skew will span the entire selection. Typically you set this value to be equal to
the number of pixels in a compound fixture or the number of fixtures in a zone or on a truss, experimentation is
recommended as interesting effects can be achieved.

l Buddy - Specifies the number of fixtures/elements that will fade together within a skewed transition, default is
1meaning that each fixture/element will fade independently. Set to 2 tomake pairs fade together, 3 for three-
somes etc. Again, experimentation recommended.

Scene Contents

To control a fixture in a scene

Select a fixture in the layout in the centre of the view. The fixture will get a red border to indicate selection.

Only fixtures with programming on them in a Scene will be controlled by the scene.

Once you add control of a parameter to a fixture it will get a blue border.

To directly control the colours of a fixture

Some fixtures within a Scene allow control of non-RGB/CMY colours directly within the Colour control. Choosing
Direct Control with a fixture that supports additional colours to RGB will provide direct control of these colours

To add control of a parameter group

Locate the parameter group which contains the parameter you want to control.

Use the appropriate controls within the parameter group to set the value/s for the required parameter.

Static Values
Within a parameter group, there will be controls for each parameter, either with buttons for specific values or a slider
for a range of values.

FX
If you want to run an effect on the parameter, use the FX button to apply a wave effect to the parameter.

To remove control of a parameter group

Locate the parameter group that you want to remove and select the Knockout button. This will remove the
selected parameters from the Scene.

Scene Simulation
When you are creating a Scene, the Scene will be simulated within the Scene view, and the Simulate view.

- 104 -

Scene

This will be held until the Clear Editor button is clicked, allowing you to visualise a Scene and a Timeline in Simulate
at the same time.

- 105 -

Pharos Designer User Manual

Direct Colour Control
If you have a fixture in your project with "complex" colour combinations e.g. RGBW, RGBA, RGBACL etc. these
additional parameters cannot be controlled by the normal RGB colour wheel properly. This control is also available
for DALI Type 8 RGBWAF fixtures (but not DALI Type 8 XY fixtures).

Within Scene, when setting a fixed colour for a fixture, there is an alternate control mechanism called Direct Control.
This is only available for fixtures with additional colour channels, and allows direct control of the colour channels
within that Scene.

Simulation of Direct Control within Designer is limited to just showing the RGB colour, but the full colour will be
output using Output Live to the controller, so accurate colours can be set using this.

- 106 -

Working with Timelines

Working with Timelines
Keyboard Shortcuts

Ctrl+N Create a New Timeline
Ctrl+D Duplicate the current timeline

Ctrl+G Go to timeline (enter name or number to filter the list); when one choice
remains, press Enter to show the timeline

Ctrl+I Show timeline properties
Ctrl+A Select all timeline programming
Delete/Backspace Delete selected timeline programming
Ctrl+left-click while adding presets Toggle the behaviour of Auto-finish
Ctrl+drag start/end of preset Snap to nearest preset, flag or waypoint

Shift+drag preset Finer resolution for drag (it snaps to the nearest 0.1s when Shift isn't
held)

Ctrl+left-click while adding flags Add flag and don't leave Add Flagmode
Esc Finish adding presets or flags
Up/Down/Left/Right Scroll the view
Space Start/pause Simulation
Esc while simulating timeline Stop Simulation
Fwhile simulating If in Add Flagmode, drop a flag at the simulation time
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Alt+ mouse wheel (Shift+ mouse
wheel) Scroll Horizontally

Esc while moving Gradient stop Cancel changing gradient

- 107 -

Pharos Designer User Manual

Timeline Tabs
Across the top of the TimelineWindow, you will see a tab for each timeline that you currently have open. This allows

you to quickly switch between timelines that are currently being worked on. You can close a timeline using the
button on its tab. This only closes the view of the timeline, the timeline isn't deleted.

To see all timelines in the project, go to theManage option in the View toolbar.

Creating a timeline
To create a timeline, click New and a fresh set of blank rows will appear to the right of each Browser entry. Use the
Timeline Properties pane to name the timeline and adjust the timeline length, if necessary.

The default timeline length is 5minutes (timeline length is really just a user interface setting and can generally be left
at the default value, or increased to providemore programming space).

The New option also allows you to easily create a timeline with the settings for:

l Default timeline (internal time source)
l Real Time Timeline (24hr timeline with real time time source)
l Astronomical Timeline (24hr timeline including Sunrise and Sunset Waypoints)
l Timecode Timeline (time source set to timecode)
l Audio Timeline (time source set to audio)

Timeline Row Categories
There are five categories of timeline row which determine the preset type that can be deployed on them.

When you attempt to add a preset to the timeline, rows that the preset cannot be applied to will be dimmed.

Groups And Fixtures

Themajority of the timeline rows will be your groups of fixtures, the All... groups created by the system as you added
fixtures and the groups youmade to organise your programming. Only certain presets can be applied to this
category. Click the plus sign to expand a group and expose its members:

A fixture, or element within a compound fixture, capable of colour mixing, for example an RGB LED or
automated light with CMY colour mixing. Use theGroup colour presets to set static or dynamic intensity and colour.

A fixture incapable of colour mixing, for example a conventional light with/without a scroller or automated light
with only a colour wheel. Use the Group intensity preset to set static or dynamic intensity. CreateMover presets to
control the scroller or colour wheel as required.

Matrices

These are the Pixel Matrices created in Setup andMapping, only certain presets can be applied to this category. In
many ways, creatingmatrices and working with these powerful presets is the preferred way to go with Designer.

- 108 -

Working with Timelines

Scene

Unlike the categories above these rows do not specify a fixture selection but are instead simply a placeholder for any
Scenes created in the project. The fixture selection is a property of the Scenes depending as it does on the fixtures
selected when the preset was created. More rows can be added as required by right-clicking in the Browser and
selecting New Scenes Row, similarly to remove them.

DALI

These rows are for the DALI ballasts and groups and will only appear if someDALI fixtures have been added to the
project, see DALI. Note that each DALI interface has its own set of rows due to the restrictions of the DALI
standard. Only DALI presets can be applied to this category.

VLC/ VLC + Rows

These rows can be used to output content to the VLC content target and can accept Matrix or Media presets. The
Content Target on a VLC is directly linked to the VLC layout, so any presets placed on this row will be output to the
whole layout.

If using a VLC+, the row will be able to expand to show Secondary and Target 3-8 rows (where enabled). The
controller row corresponds to the Primary Content Target. These refer to the content targets which can be created in
the Composition Editor.

Audio Rows

There are two types of audio row possible within a timeline:

l Simulation Audio
l Controller Audio

Simulation Audio
Simulation audio rows are available if Simulation Audio is enabled in the SimulateMode. Audio clips can be dropped
onto this row to playback on your computer when simulating the timeline. This is not uploaded to the controller for
use during playback.

Controller Audio
Controller Audio is available if an LPC X, VLC or VLC+ are in use in the project and the Timeline Audio feature has
been enabled.

This audio will be played back by the controller, and output from the audio connectors on the rear of the controller.

Timeline Row Priorities
While the Latest Takes Precedent system determines what should be rendered and output as presets come and go
over time, it is the order of the rows that determines what should be rendered and output should two or more presets
with fixtures in common start simultaneously, with rows higher up the list taking precedent.

- 109 -

Pharos Designer User Manual

For example a fixturemay be amember of two groups with a preset applied to both starting at the same time. In this
case the fixture will render the preset for the group higher up the list. Groups can be reordered in the browser simply
by dragging them to new positions, although this will affect all timelines.

Accordingly, simultaneous presets placed on groups and fixtures have a higher priority than presets placed on
matrices.

Browser Controls And Feedback
The Browser toolbar provides controls for expanding and collapsing groups and compound fixtures as well as
highlighting rows with programming. The Browser provides useful feedback as to which rows contain programming;
elements, fixtures and groups will be displayed in blue, compound fixture or group headings will indicate the
presence of any programming onmembers even when collapsed.

Expand All

Expands all compound fixtures and groups so that all element rows are displayed. Items with programming will be
shown in blue.

Expand All Groups

Expands only groups so that all fixture rows are displayed. Items with any programming, even on a concealed
member, will be shown in blue.

Collapse All

Collapses all so that only group rows are displayed. Groups with any programming, even on a concealedmember,
will be shown in blue.

Hide Unused

Use this filter to hide all the unused rows, press again to turn off. Only items with any programming, even on a
concealedmember, will be shown in blue.

Selecting Timelines
To choose which timelines are open for editing, go to theManage option in the View toolbar. This will then display a
dialog of all the timelines in the project. You can open a timeline by double clicking on it.

From this dialog you can also search your timeline list to narrow down the options within the timeline list.

Copying Timelines
Timelines can be copied using the Copy button, the copy is a brand new instance that operates independently,
useful for creating similar timelines.

Deleting Timelines
Timelines can be deleted using the Delete button, a warning dialog will you prompt you to confirm.

- 110 -

Working with Timelines

Maintaining Indefinite Output
There are two ways of maintaining a timeline’s output beyond the end of the last preset. This is a particularly
important feature for architectural use where a simple wall panel could be used to recall “scenes” at random which
would remain active indefinitely until another is recalled:

Hold

Press the Hold button to prevent the timeline from releasing at the end (the default). Presets will remain active until
overridden, effects andmedia will continue to play. Press the button again to reinstate the release.

Loop

In Default and Audio Timelines, Press the Loop Timeline button tomake a timeline loop indefinitely. If using a time
source other than internal, setting to loop will allow the timeline to run again next time the timecode occurs. This is
useful if you want to loop a sequence of presets immediately, or every time the timecode is used, or every day.
Press the button again to remove the loop.

Release at End

In Real Time, Astronomical and Timecode Timelines, Release at End can be used to prevent a timeline from
replaying when the time source loops. By default, when the time source loops, the timeline while go back to the start
to stay in sync with the time source (e.g. real time across midnight). This can be disabled using the Release at End
option

It's also worth noting that a Timeline Running condition won't detect timelines that are holding at end. A Timeline
Onstage condition will detect a looping or held at end timeline as long as the timeline is affecting the output of at least
one fixture. Timeline Started and Timeline Ended triggers will match whenever a looping timeline loops. A Timeline
Ended trigger will never match a timeline that is holding at end.

Note:Projects with lots of timelines set to Hold or Loop can eventually overwhelm the Controller(s) if these timelines
are not explicitly released when no longer required.

Auto-Release

If a Timeline has the Time Source set to Timecode or Real Time, the Loop option changes to Auto-Release. When
set, the timeline will be released if the playhead reaches the end, otherwise it will continue running linked to the time
source. If using Timecode, this means that it can restart if the timecode loops. If using Real Time, this means that
the timeline will play again the next day.

Flags
Flags can be dropped onto timelines for use with triggers to createmore complex presentations; perhaps
incorporating remote sensors and conditional logic or triggering show control or AV equipment.

- 111 -

Pharos Designer User Manual

To set a flag, press the Add Flag button and drop it onto the timeline ruler at the required position. Hold downCtrl
(Cmd) while pressing Add Trigger Flag to dropmultiple flags in a single session, press the button again to finish.

To Edit or Delete a flag, click on the flag that you want to edit and a properties dialog will appear:

From here you can adjust the flag time, give the flag a name or Delete the flag.

Name

The name property of a flag is used within Flag triggers to easily identify the flag rather than using the time that the
flag is set at.

Use the Triggers window to determine what these flags will do.

Learn Timing

When simulating a single timeline, flags can be dropped interactively after pressing the Add Flag button to enter learn
timingmode. Press F to drop a flag at each appropriate playback time then depress the Add Flag button to exit learn
timing or click anywhere on the timeline (in which case a final flag will be dropped).

Waypoints

To use waypoints, youmust set the Time Source of the Timeline to Real Time

A waypoint is an astronomical time which should always display the programming at that point on the timeline. The
timeline around the waypoint/s (as shown by the coloured section/s) will be rate shifted to ensure that the correct
output is displayed at the specified astronomical time.

There are various Waypoints available, the same astronomical options available in the Astronomical Trigger:

l Nautical Dawn
l Civil Dawn
l Sunrise

- 112 -

Working with Timelines

l Sunset
l Civil Dusk
l Nautical Dusk

It is possible to placemultiple waypoints in the same range, e.g. the range spans the 24 hour timeline with waypoints
for Sunrise and Sunset. This would create three sections within the timeline which would be played back a different
rates to ensure that the waypoints are hit at the required astronomical time.

The example above uses a SunriseWaypoint and a Sunset Waypoint. The timeline will output Red at midnight,
crossfading to blue at 3am, then holding blue then crossfading to black at Sunrise. The black output will be held until
Sunset, when it will crossfade back to blue, then back to red. The rates of the sections betweenMidnight, Sunrise,
Sunset andMidnight will all be adjusted so that the colours specified at each event are reached at the correct time for
the astronomical event. As Sunrise gets earlier, theMidnight to Sunrise section will play back at a greater rate so it
takes a shorter time to reach the Sunrise colour (black).

Note: To useWaypoints, youmust have a Location set for the project.

/ Locking Timelines
When clicking on presets to edit their properties it is sometimes all too easy tomove or stretch them by accident so
it is possible to lock a timeline using the Lock button on the timeline toolbar. When a timeline is locked it is only
possible to edit the preset properties, moving or stretching them is prohibited. Press the Lock button again to unlock.

- 113 -

Pharos Designer User Manual

Timeline Properties
Keyboard Shortcuts

Shift while selecting timelines Select a range of timelines (by choosing the first and last in the range)

Ctrl while selecting timelines Select discrete timelines (each timeline selected while holding Ctrl will
be added to the selection)

To change to properties of a timeline, selectManage... from the Timeline Toolbar. The dialog shown below will
appear and you will be able to change the properties for the selected timeline/s.

Name
Give your timeline a name here, a descriptive namewill help you identify the correct timeline when creating triggers
and viewing the web interface's status and control pages.

Number
Every timeline has a unique number which is primarily for reference but can be changed if necessary. The timeline
number is used to identify a timeline for creating triggers, for example when using LUA scripts, and when using the
web interface's command line.

Group
TheGroup dropdown can be used to assign a timeline to a Timeline Group.

See Actions for more information.

Length
The default timeline length is 05:00.00 (5minutes) and you will need to increase this before placing or extending
presets beyond this time. Themaximum timeline length is 24 hours to prevent them becoming unmanageable - use
triggers to stitch together multiple timelines to create longer time frames.

- 114 -

Timeline Properties

Background Colour
Select the background colour of the timeline. Setting this to a colour that is not used within the timeline will make it
easier to see some presets, e.g. a 255 intensity preset won't show up very well if the background colour is white.

Priority
Use the pull-down to select a priority level for the timeline. There are 5 priority levels which each feature an LTP+
timeline stack:

l High - the High Priority stack always plays above other timeline stacks
l Above normal
l Normal - the default priority
l Below normal
l Low - the Low Priority stack always plays below other timeline stacks

Time Source
Use the pull-down to select a time source for the timeline to follow:

l Internal - the timeline will run autonomously although playback speed and position can be overridden using
triggers.

l Real Time - the timeline will follow real time (see below)
l Timecode Bus - the timeline will follow one of the Timecode Buses (see below).
l Audio Bus - the timeline will follow one of four Audio Buses (see below).

Working with Real Time

When a timeline's time source is set to Real Time, it will always line up its position with the time according to the
controller.

This means that timelines can be created that will always play the same effect at the same time every day.

Timelines can be up to 24 hours long, but they can be any length less than that. If the timeline isn't 24 hours long,
then a Start Time can be set to define when in the day these effects should be run.

Setting a timeline's time source to Real Time allows you to use waypoints on that timeline.

- 115 -

Pharos Designer User Manual

Note:When Simulating timelines, the playback rate can be increased to 60x normal speed to accommodate long
Real Time timelines

Working with Timecode
By selecting one of the Timecode Buses, the timeline's time bar will display timecode values and the properties pane
will give further options:

Time Offset

Timelines by default start at 00:00:00.00 (hours:minutes:seconds.frames) but the timecode sourcemay not do so,
the tapemay have been "striped" with an offset of an hour (01:00:00.00) for example. Enter the source's starting
value in this box to synchronise.

Format

Timecode comes in four formats that depend on the sourcemedia used, select the appropriate format here (Film24,
EBU25, SMPTE30 & NTSC30) to prevent missed frames and stuttering playback.

Timecode Buses

Timecode Buses are internal buses to which one patches the external timecode sources available to the system.
Thesemay beMIDI timecode (MTC) sources input via one or more LPCs' or RIO As' MIDI Inputs or linear timecode
(LTC) sources input via one or more RIO As. You can use the Timecode Viewer available from themainmenu to
monitor each Timecode Bus:

- 116 -

Timeline Properties

Working with Audio
By selecting one of the four Audio Buses, the properties pane will give further options:

Band

The RIO A can generate up to 30 frequency bands (configured in Remote Device properties). Use this pull-down to
select which band will drive the timeline.

Audio Buses

The four Audio Buses are internal buses to which one patches the external audio sources available to the system via
one or more RIO As. You can use the Audio Feedback window available from theMainmenu tomonitor each Audio
Bus:

- 117 -

Pharos Designer User Manual

Changing the Timeline and Preset Defaults
UseMainMenu > Preferences on themain toolbar and select the Timelines tab to change these defaults. Here you
can change the default background colour, timeline length and fade & release time of newly placed presets. See
Preferences.

- 118 -

Working with Presets

Working with Presets
Applying Presets
At its most basic let’s, for example, make a fixture or group of fixtures go green. To apply a preset to a timeline you
will need to select it and then click to drop it onto the timeline. Select the “Colour” preset and drop this onto the
appropriate timeline row so that it starts at the required time, say at 0 seconds. A 10 second long red strip (the default
length and colour) will appear already selected for manipulation via the Preset Properties pane on the right. “Colour”
preset properties are limited to colour and timing, use the colour picker to select green and set a fade time and skew
as required.If you have the Simulate window open you can now simply click Start and you’ll see these fixtures fade
to green using the time and transition you have just entered and, after 10 seconds, fade back to black using the
default release time of 2 seconds.

Presets can bemoved and stretched on the timeline using themouse to vary their start, end and length or
alternatively you can type exact values into the Timing fields top right. Click View Transitions to display the fade and
release timing graphically which can also be stretched using themouse as an alternative to typing fade and release
time values into the Timing pane.

So getting slightly more adventurous let’s say you want the fixtures to remain green for longer, say 20 seconds, and
then fade to a rainbow effect. Firstly either drag the end of the green preset to 20 seconds on the timeline or set the
end or length value to be 20 seconds via the Timing fields. Now select the “Rainbow Effect” preset and drop this onto
the timeline immediately following the green preset (so it starts at 20 seconds) and set its period to be 2 seconds
with a “Spread” offset type. Again, use the Simulate window to view this new programming (click Reset then Start).

Tip:Hold Shift while dragging for finer resolution (centisecond). Hold Ctrl (Cmd) while dragging to snap to the
start/end of other placed presets.

Programmed groups, fixtures or elements - i.e. those with at least one preset applied - are shown in blue in the
Browser, unprogrammed remain black.

Note:When adding presets to the timeline, the timelines rows will change appearance to indicate which rows the
preset can be dropped on. Darker rows can have the preset dropped onto them, lighter rows cannot.

Pre-configuring A Preset

You can configure a preset before applying it to a timeline. When you select the preset from the preset browser, you
can set the parameters as discussed below. When you then add the preset to the timeline it will have these
properties.

This allows you to dropmultiple presets with the same parameters ontomultiple timeline rows.

Filtering Presets
The Preset browser displays all of the available presets of the requested type (Built-in, User etc.). The Built-in and
User browsers can filter the available presets to make it easier to find the preset you are looking for.

The filter button beside the search lets you choose the types of preset (Groups, Pixel Matrix, VLC) to display in the
browser.

- 119 -

Pharos Designer User Manual

Colour Picker & User Palette
Themajority of presets allow you to select one or more colours and so the colour picker and user palette is used to
select a colour either graphically or numerically, twomodes are provided:

A user colour palette is available with the third button to the right of the colour picker. The palette comes pre-
populated with the primary and secondary colours, along with black and white. To add your own colour simply mix it
using the picker and click the Save button. This will store the colour within your user palette The user palette is
stored with the project.

Variable White Fixtures

The temperature slider takes effect on fixtures with warm white and cold white control channels and on fixtures with
a single colour temperature channel.

Transparency

Some preset types support transparency. This is where one of the colours within the effect is specified as
transparent, allowing whatever programming is running underneath to be seen. It is a very powerful feature allowing
some very specific effects to be achieved that would otherwise be impossible.

However it also allows you to break some of the usual rules of Pharos playback and so it may need some extra
thought or experimentation to get the result you are looking for. Here are some tips on how to get the best from this
feature:

- 120 -

Working with Presets

l Before using transparency make sure there isn't a way to achieve what you want using the existing opaque
presets. If there is another way to get what you want then that may make life simpler. Use transparency for
those very specific effects that cannot be achieved any other way.

l It can sometimes be difficult to make transparent effects behave tidily when a timeline loops. Use it in
timelines that don't loop or hold at end when you can, or make a point of turning off the transparent effect
before the point when it loops.

l It may be easier to get the result you want by using several timelines. Often problems can be avoided by hav-
ing one timeline that contains the transparent effects and putting the background non-transparent effects into
a separate timeline.

l When you are usingmultiple timelines, don't forget about the timeline priority setting. This can be a way of
ensuring that transparent effects stay on top while you change the background underneath.

Gradient Options
When a preset includes aGradient Property, additional properties can be shown using the advanced feature button

Random -Will create a random gradient, and open some options to better specify the random gradient

Reverse -Will flip the gradient horizontally

Distribute -Will spread out the colour stops evenly

Randomise positions -Will set the colour stops to random positions, without changing the colours

Shuffle colours -Will randomly set the colours of the colour stops to one of the current colours without affecting
the positions

Load - Allows you to load a saved gradient into the editor

Save - Allows you to save the gradient for future use

- 121 -

Pharos Designer User Manual

Random Gradient

Colour - The seed colour for the random colour, can be randomised.

Hue variance - Maximum variance of the gradient colour's hue

Saturation variance - Maximum variance of the gradient colour's saturation

Brightness variance - Maximum variance of the gradient colour's brightness

Stop count - Number of colour stops in the gradient

Position variance - Variance of the position of the colour stops from an even distribution

Saving Presets
When you have created a preset with settings that youmay want to reuse, you can save it to your User presets.

The Save button will store the settings for the current preset and allow you to rename the preset.

These saved User presets can be found in the User tab of the preset browser, and added to the timeline in the same
way as the Built-in presets.

Scenes
Scenes can be dropped onto the Scene rows at the required time to synchronise their control with the rest of the
presentation.

Tip:Scene rows are automatically added when you add a Scene to a row so that you have an empty row.

Note:Scene rows have the lowest priority within a timeline, so programming applied to a fixture in the Group section
will always override its programming within a Scene.

DALI Presets
DALI presets can be dropped onto the DALI ballasts and groups for each DALI interface in the project, see DALI.
DALI presets should be thought of as commands instructing the DALI ballasts or groups to fade to a level or scene
with the ballasts retaining this level or scene indefinitely regardless of the state of the timeline. Unlike DMX fixtures,
there exists no notion of a released, default state and so DALI ballasts must be explicitly turned off with a preset.
Beware that timelines set to loop will repeatedly run any placed DALI presets and thus reissue these commands
until the timeline is released.

Tip: It may be simpler to separate DALI programming onto dedicated timelines and use triggers to synchronize them
to the other fixture programming.

- 122 -

Working with Presets

Copying Presets
Presets can be copied (right-click>Copy) from one position and pasted (right-click>Paste) into a different position on
the same timeline, on another timeline in the project or in a timeline in a different project, this helps speed up the
process of applying programming from one set of fixtures onto another; preset parameters, timing and transitions will
all be copied. Note that copying presets in this way creates brand new instances of presets that operate
independently of each other.

Tip:Hold Shift while selecting Paste to place the copy with fisner resolution (centisecond).

Linking Presets
If, however, you want to addmore fixtures to an existing preset so as to operate on them all as one then drag the top
or bottom edge of that preset up or down to includemore rows of fixtures, this operation creates a linked preset. Note
that any skewed timing or effects within the preset will now be rendered over the new, larger fixture selection - use
Repeat to compensate if required.

A linked preset can be unlinked if desired by using right-click>Unlink to yield separate, identical instances.

Only presets on fixtures or groups can be linked.

Deleting Presets
Presets can be deleted by pressing Delete, Backspace or using right-click>Delete.

Selecting Multiple Presets
To select more than one preset at a time for moving and editing properties or timing hold Ctrl (Cmd) while clicking to
build the selection or Ctrl (Cmd) + A to select all.

- 123 -

Pharos Designer User Manual

Preset Types and Properties
The Timeline window is where you put your presentation together by dragging and dropping the built-in effects and
your User Presets, Scenes, Media and Custom Presets onto your Fixtures, Groups and Pixel Matrices:

The window comprises 4 sections: On the left is the Browser, in themiddle the Timeline editing area. top right are the
folders of Built-in, User, Media, Scene, DALI and Custom Presets (although not all folders may be displayed). Below
this is the Preset Properties pane which is divided into Timing, Transition and Properties all of which you use to
manipulate how a preset placed on a timeline is rendered.

Before creating a timeline it is worth covering the six preset types:

Built-in Presets
Designer comes with a range of Built-in presets which can be used to create a range of static, dynamic, wave based,
and 2D effects over a group or array of fixtures. The Presets can be used on Fixtures, Groups, Pixel Matrices or
VLC/ VLC+ Content Targets.

White

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Themost basic preset, sets an intensity and colour temperature.

You can also animate the white by selecting a wave shape.

l Shape - choose None (static intensity) or a dynamic effect (Sine, Cosine, Square, Triangle or RampUp)
l Base - The centre of the wave
l Size - the amplitude of the effect

- 124 -

Preset Types and Properties

l Period - the period of the effect in seconds
l Count - the number of times that the effect should repeat over the length of the preset
l Offset Style - choose None (all elements are the same intensity), Spread (the effect is spread over space as
well as time) or Once (as None, but will stop after one period)

l Reverse - reverses the direction of the effect
l Repeat - the number of elements to repeat the effect over
l Buddy - the number of elements that will be set to the same intensity (if Buddy is greater than 1, the number of
elements that are repeated over is Repeat multiplied by Buddy)

Colour

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a static colour fill. Use the colour picker, user palette or text entry fields (RGB or HSI) to select the colour.

You can also animate the colour by selecting a wave shape.

l Shape - choose None (static colour) or a dynamic effect (Sine, Cosine, Square, Triangle or RampUp)
l Base - The centre of the wave
l Size - the amplitude of the effect
l Period - the period of the effect in seconds
l Count - the number of times that the effect should repeat over the length of the preset
l Offset Style - choose None (all elements are the same intensity), Spread (the effect is spread over space as
well as time) or Once (as None, but will stop after one period)

l Reverse - reverses the direction of the effect
l Repeat - the number of elements to repeat the effect over
l Buddy - the number of elements that will be set to the same intensity (if Buddy is greater than 1, the number of
elements that are repeated over is Repeat multiplied by Buddy)

Direct Colour

Usewith: Fixtures, Groups

Renders a static colour fill. Use the sliders to set the specific value for each emitter.

This preset only becomes active if there are fixtures in the project that support Direct Colour.

l Direct Colour - define the desired static colour using the intensity sliders for each emitter channel.

Note that the preset will display available colour channels based on all fixtures introduced within the project layout
rather than on a per fixture/group basis. This means that the preset can be applied to a fixture/group that has fewer
emitter channels, however, only the available channels will take effect on each fixture/group.

Crossfade

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a linear crossfade from the start colour to the end colour:

l Start Colour - the colour to start the crossfade in
l EndColour - the colour to end the crossfade in

- 125 -

Pharos Designer User Manual

Gradient

Usewith: Fixtures, Groups

Renders a static multi-colour gradient over a group of fixtures:

l To change a colour, press on the coloured button, select a colour and press Ok
l Tomove a colour, click and drag the coloured button
l To add a new colour, click anywhere on the slider where there is no button
l To remove a colour, right-click on the coloured button
l Repeat - the number of elements between the start and end of the fan
l Buddy - the number of elements that will be set to the same colour in the fan (if Buddy is greater than 1, the
number of elements that are repeated over is Repeat multiplied by Buddy)

2D Gradient

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a static multi-colour gradient on amatrix:

l To change a colour, press on the coloured button, select a colour and press Ok
l Tomove a colour, click and drag the coloured button
l To add a new colour, click anywhere on the slider where there is no button
l To remove a colour, right-click on the coloured button
l Type - the shape of the rainbow effect (Linear, Radial, Conical, Square, Noise, Perlin Noise or Bilinear)

If the Type is Linear, Radial, Conical, Square or Bilinear, the properties Angle, Repeat and Count are available:

l Repeat - the repeat style (None, Sawtooth, Triangle)
l Count - the number of repeats
l Angle - the angle in degrees of the gradient (Linear, Conical & Bilinear only)

If the type is Noise:

l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

If the type is Perlin Noise:

l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed
l X - the horizontal scale (higher numbers will producemore variation horizontally)
l Y - the vertical scale (higher numbers will producemore variation vertically)
l Depth - the coarseness of the noise

Gradient Mesh

Usewith: Pixel Matrices

Renders a dynamic gradient effect onto aMatrix or Target. Gradients are produced betweenmultiple points on a grid

- 126 -

Preset Types and Properties

l Random - generate random settings for the effect
l Colours - pressing the colour buttons will prompt for a new colour for that step
l Interpolate - when checked the colours are used as points in a gradient to generate the colours in themesh
l Colours - the number of colours used in themesh
l Colour changes - the number of control points across the gradient
l Colour change variance - how evenly the colour points are spread across the gradient
l Weight variance - determines the effect each grid point has on the gradients around it
l Dynamic weights - determines whether the weights should change
l Dynamic weight rate - determines how much the weights vary
l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l X points - the number of grid points along the X axis
l Y points - the number of grid points along the Y axis
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new random seed

Burst

Usewith: Fixtures, Groups

Creates a single wave in the chosen shape

l Base colour - the base colour
l Top colour - the colour of the pulse
l Transparency - select Opaque for none, Base or Top Transparent to superimpose the effect onto other pro-
gramming

l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Phase - the offset of the pulse in degrees
l Shape - the shape of the pulse (Sine, Triangle, Square, RampUp or RampDown)
l Pulse width - the size of the pulse
l Pulse speed - the rate of the pulse
l Reverse - reverse the direction of the pulse
l Repeat - the number of elements to repeat the pulse over
l Buddy - the number of elements that will be set to the same colour in the pulse (if Buddy is greater than 1, the
number of elements that are repeated over is Repeat multiplied by Buddy)

2D Burst

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Creates a single wave in the chosen 2D shape on amatrix

l Base colour - the base colour
l Top colour - the colour of the pulse
l Transparency - select Opaque for none, Base or Top Transparent to superimpose the effect onto other pro-
gramming

l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Pattern - the type of pulse (Linear, Bilinear, Radial or Square)
l Angle - the angle in degrees of the pulse (Linear & Bilinear only)
l Reverse - reverse the direction of the pulse

- 127 -

Pharos Designer User Manual

l Shape - the shape of the pulse (Sine, Triangle, Square, RampUp or RampDown)
l Pulse width - the size of the pulse
l Pulse speed - the rate of the pulse

Wave

Usewith: Fixtures, Groups

Renders a dynamic pulse of colour passing over another colour:

l Base colour - the base colour
l Top colour - the colour of the pulse
l Transparency - select Opaque for none, Base or Top Transparent to superimpose the effect onto other pro-
gramming

l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Repeat - the number of elements to repeat the pulse over
l Buddy - the number of elements that will be set to the same colour in the pulse (if Buddy is greater than 1, the
number of elements that are repeated over is Repeat multiplied by Buddy)

l Shape - the shape of the pulse (Sine, Triangle, Square, RampUp or RampDown)
l PulseWidth - the width of the pulse in percent (1 > 200%, if 100%, the pulse is half of the element width)
l Phase - the offset of the pulse in degrees
l Reverse Direction - reverses the direction of the pulse
l Invert Pulse - changes the starting position of the pulse

2D Wave

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a dynamic pulse of colour over another colour on amatrix:

l Base colour - the base colour
l Top colour - the colour of the pulse
l Transparency - select Opaque for none, Base or Top Transparent to superimpose the effect onto other pro-
gramming

l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Pattern - the type of pulse (Linear, Radial, Conical, Square, Noise, Perlin Noise or Bilinear)
l Shape - the shape of the pulse (Sine, Triangle, Square, RampUp or RampDown)
l PulseWidth - the width of the pulse in percent (1 > 200%, if 100% the pulse fills half of thematrix)
l Reverse Direction - reverses the direction of the pulse
l Invert Pulse - changes the starting position of the pulse

If the Type is Linear, Radial, Conical, Square or Bilinear, the properties Angle, Repeat and Count are available:

l Repeat - the repeat style (None, Sawtooth, Triangle)
l Count - the number of repeats
l Angle - the angle in degrees of the pulse (Linear, Conical & Bilinear only)

If the type is Noise:

l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

- 128 -

Preset Types and Properties

If the type is Perlin Noise:

l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed
l X - the horizontal scale (higher numbers will producemore variation horizontally)
l Y - the vertical scale (higher numbers will producemore variation vertically)
l Depth - the coarseness of the noise

Rainbow

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a dynamic rainbow effect cycling through hue:

l Colour - specifies the start colour of the rainbow (the saturation and intensity aremaintained throughout the
cycle)

l Period - the number of seconds that the rainbow takes to complete one cycle
l Count - the number of times that the rainbow should cycle over the length of the preset
l Reverse Colour - reverses the direction around the hue circle (default (unchecked) is clockwise)
l Offset Style - Choose None (all elements are the same colour) or Spread (the rainbow is spread over space
as well as time)

l Scale - The relative size to scale the rainbow to before spreading it over the group (2 will make the spread
double to group size, so half the rainbow is visible at a time)

l Reverse Direction - if Offset Style is Spread, reverse the direction of the spread in space
l Repeat - the number of elements between the start and end of the hue circle
l Buddy - the number of elements that will be set to the same colour in the rainbow (if Buddy is greater than 1,
the number of elements that are repeated over is Repeat multiplied by Buddy)

2D Rainbow

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a dynamic rainbow effect on amatrix:

l Colour - specifies the start colour of the rainbow (the saturation and intensity aremaintained throughout the
cycle)

l Period - the number of seconds that the rainbow takes to complete one cycle
l Count - the number of times that the rainbow should cycle over the length of the preset
l Pattern - the shape of the rainbow effect (Linear, Radial, Conical, Square, Noise, Perlin Noise or Bilinear)
l Reverse - reverses the direction of the wave

If the Type is Linear, Radial, Conical, Square or Bilinear, the properties Angle, Repeat and Count are available:

l Repeat - the repeat style (None, Sawtooth, Triangle)
l Count - the number of repeats
l Angle - the angle in degrees of the wave (Linear, Conical & Bilinear only)

Note that setting Repeat to None will only have an apparent effect when the Type is Radial. It behaves like
Sawtooth with a Count of 1, except that the area outside the unit circle is filled with the same colour as the edge of
the unit circle, rather than the effect continuing beyond a Count of 1.

If the type is Noise:

- 129 -

Pharos Designer User Manual

l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

If the type is Perlin Noise:

l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed
l X - the horizontal scale (higher numbers will producemore variation horizontally)
l Y - the vertical scale (higher numbers will producemore variation vertically)
l Depth - the coarseness of the noise

Random

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a dynamic chase through a random sequence of colours:

l Start colour - specifies the first colour of the sequence, all subsequent colours are relative to the start colour
in a pseudo-random way (saturation and intensity levels aremaintained)

l Steps - the number of steps in the sequence
l Seed - the seed of the pseudo-random sequence (copying this value to another preset will create the same
random sequence)

l Randomise - picks a new seed
l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Offset Style - choose None (all elements are the same colour) or Spread (the sequence is spread over space
as well as time)

l Reverse - reverses the direction of the wave
l Repeat - the number of elements to repeat the pulse over
l Buddy - the number of elements that will be set to the same colour in the pulse (if Buddy is greater than 1, the
number of elements that are repeated over is Repeat multiplied by Buddy)

l Fade - the fade time in seconds between each colour in the sequence
l Hold - the time that each colour in the sequence is not fading

Chase

Usewith: Fixtures, Groups, VLC/ VLC+ Primary/Secondary

Renders a dynamic chase through a user-specified sequence of colours:

l Colours - pressing the colour buttons will prompt for a new colour for that step
l Steps - the number of steps in the sequence
l Direction - choose Forwards, Backwards or Bounce (the latter uses two periods to complete)
l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Offset Style - choose None (all elements are the same colour) or Spread (the sequence is spread over space
as well as time)

l Reverse - Reverse the direction of the pulse
l Repeat - the number of elements to repeat the chase over
l Buddy - the number of elements that will be set to the same step (if Buddy is greater than 1, the number of ele-
ments that are repeated over is Repeat multiplied by Buddy)

l Fade - the fade time in seconds between each colour in the sequence
l Hold - the time that each colour in the sequence is not fading

- 130 -

Preset Types and Properties

2D Chase

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Creates a Chase, with multiple colours, and renders it using the same 2D options as the 2D Wave.

To change the colours, selected the block above the colour display and chose a new colour.

l Steps - the number of colour steps in the Chase
l Direction - the order the chase works through the specified colours (Forwards, Backwards, or Bouncing)
l Period - the number of seconds that the sequence takes to complete
l Count - the number of times that the sequence should complete over the length of the preset
l Phase - the position on the underlying waveform that the effect starts at.
l Pattern - the type of pulse (Linear, Bilinear, Radial, Conical, Square, Noise or Perlin Noise)
l Angle - the angle in degrees of the pulse (Linear, Conical & Bilinear only)
l Curve - the amount that each repeat of the Conical effect curves round. (Conical only)
l Repeat - the repeat style (None, Sawtooth, Triangle)
l Count - the number of repeats
l Reverse - reverse the direction of the pulse
l Fade - the crossfade time from each colour to the next.
l Hold - the time that each colour holds for before starting the next fade

Hue Fade

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Performs a fade in hue between two defined points:

l Start colour - defines the hue at the start of the preset, and the saturation and brightness throughout the preset
l End colour - defines the hue at the end of the preset; saturation and brightness will be the same as the start
colour

l Reverse - reverses the direction of the hue fade

The start and end colours will share the same saturation and brightness; editing the saturation or brightness for one
colour will edit the other as well.

The fade time between the colours is determined by the length of the preset on the timeline.

Strobe

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a dynamic colour strobe effect on black:

l Colour - specifies the flash colour
l Transparency - select Opaque for none, Base Transparent to superimpose the effect onto other programming
l Period - the interval in seconds between the start of each flash
l Duration - the length in seconds of the flash

- 131 -

Pharos Designer User Manual

Sparkle

Usewith: Fixtures, Groups, Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a dynamic random sparkle effect:

l Base colour - the colour of the background
l Spark colour - the colour of the spark
l Transparency - select Opaque for none, Base or Spark Transparent to superimpose the effect onto other pro-
gramming

l Period - the rate of the effect (larger numbers are slower)
l Density - the density of the effect in percent (higher numbers, more sparks)

Flicker

Usewith: Fixtures, Groups, Pixel Matrices

Renders dynamic, random flickering over a colour gradient:

l To change a colour, press on the coloured button, select a colour and press Ok
l Tomove a colour, click and drag the coloured button
l To add a new colour, click anywhere on the slider where there is no button
l To remove a colour, right-click on the coloured button
l Period - the period of the effect in seconds
l Sub - the amplitude of the low frequency perturbation
l First - the amplitude of the fundamental flicker frequency
l Second - the amplitude of the second harmonic
l Third - the amplitude of the third harmonic
l Seed - used to offset the effect; click the Randomise button to generate a random value
l Uniform - apply the Seed value as the offset for all fixtures in the group, or use it as a seed to generate random
offsets for each fixture in the group

Each of the sliders corresponds to a sine wave of a specific frequency. The frequency of Sub is defined by the
Period - the default is 30 seconds (1/30Hz). First will be twice as fast, Second twice as fast again and Third twice as
fast as Second. The value of each sine wave is used to fetch a value from a set of pre-generated random values and
the four results are summed. The sum is used to select a position in the colour gradient to output to the fixtures. Mix
the different frequency components using the sliders to select how much of each component you want.

So if you are looking for a relatively steady flicker youmight have a lot of Sub, with a little bit of Third to stop it
looking too regular. If you want amore chaotic looking flicker then youmight have less of Sub and First andmore of
Second and Third. It really is something you have to experiment with. If you want the overall flicker to have a
different speed change the Period and everything will shift accordingly.

If you've got a set of slider values that you like and you want to copy the effect to another group, but not have both
groups flickering identically, then just click the Randomise button to change the offset.

Perlin Noise

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a smoothly-varying noise effect:

- 132 -

Preset Types and Properties

l To change a colour, press on the coloured button, select a colour and press Ok
l Tomove a colour, click and drag the coloured button
l To add a new colour, click anywhere on the slider where there is no button
l To remove a colour, right-click on the coloured button
l Period - the number of seconds that the noise takes to loop
l Count - the number of times that the noise should loop over the length of the preset
l Phase - the phase shift of the underlying wave
l X - the horizontal scale (higher numbers will producemore variation horizontally)
l Y - the vertical scale (higher numbers will producemore variation vertically)
l Depth - the coarseness of the noise
l Rate - the rate at which the noise varies
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

Starfield

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a radiating star field:

l Space colour - the colour of the background (on the VLC this can be set to transparent)
l Star colour - the colour of the stars (on the VLC the opacity can be set for this)
l Speed - the speed of the stars
l Star Count - the number of stars to show
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

Opacity on stars will show through the Space colour and transparency on Space will show through any effect playing
below the starfield.

Fireflies

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders an effect of "fireflies" randomly flying about

l Period - the number of seconds that the fireflies take to loop
l Count - the number of times that the fireflies should loop over the length of the preset
l Background - the colour of the background (on the VLC this can be set to transparent)
l Start colour - the starting colour of the fireflies
l End colour - the end fade colour of the fireflies
l Opacity - the opacity of the fireflies (100% is fully opaque)
l Speed - the speed that the fireflies move at
l Duration - the lifetime of the fireflies
l Fireflies - the number of fireflies visible at any one time
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

Opacity on fireflies will show through the background colour and transparency on background will show through any
effect playing below the fireflies.

- 133 -

Pharos Designer User Manual

Nebula

Usewith: VLC/ VLC+ Primary/Secondary

Renders an effect of a nebulous gas cloud

l Period - the number of seconds that the nebula take to loop
l Count - the number of times that the nebula should loop over the length of the preset
l Background - the colour of the background (on the VLC this can be set to transparent)
l Start colour - the starting colour of the particles
l End colour - the end fade colour of the particles
l Opacity - the opacity of the particles (100% is fully opaque)
l Speed - the speed that the fireflies move at
l Duration - the lifetime of the particles
l Particles - the number of particles visible at any one time
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

Opacity on particles will show through the background colour and transparency on background will show through any
effect playing below the nebula.

Tiles

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Renders a random geometric tile arrangement with varying colours.

l Gradient:
l To change a colour, press on the coloured button, select a colour and press Ok
l Tomove a colour, click and drag the coloured button
l To add a new colour, click anywhere on the slider where there is no button
l To remove a colour, right-click on the coloured button

l Tile width - themaximum width of a tile
l Tile height - themaximum width of a tile
l Tile splits - themaximum number of times each tile could be randomly split in half
l Steps - the number of colour steps across the gradient to use to set the tile colours
l Period - the number of seconds that the colour steps takes to loop
l Count - the number of times that the colour steps should loop over the length of the preset
l Fade - the crossfade time from each colour to the next.
l Hold - the time that each colour holds for before starting the next fade
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

Ripple
Usewith: Pixel Matrices

Renders ripples onto thematrix:

l Gradient - the colours that the ripples fade through
l Background colour - the background of the effect

- 134 -

Preset Types and Properties

l Antialiasing - Enable to add fades around the edge of the ripples
l Ripple fade out - the fade path of the ripple

l None - the ripple doesn't fade out
l Linear - the opacity of the ripple decreases linearly with time.

l Period - the number of seconds that the ripples take to loop
l Count - the number of times that the ripples should loop over the length of the preset
l Lifetime - the length of time that the ripple exists for
l Speed - the rate of growth of the ripple
l Type - the type of colour fill to use

l Solid - fade from the start of the gradient to the end over the lifetime of the ripple
l Gradient - apply the gradient to the body of the ripple
l Random - randomly select a single colour from the gradient for each ripple

l Filled - when enabled, a filled circle is rendered, when disabled a hollow circle is rendered
l Ripple width - the thickness of the ripple (when filled, the gradient is rendered over this distance)
l Ripples - the number of ripples to create during the loop
l Seed - the seed of the pseudo-random noise (copying this value to another preset will create the same noise)
l Randomise - picks a new seed

Text

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary/Overlay

Renders a scrolling text message on amatrix:

Renders a text message which can be changed at runtime:

l Base colour - the base colour
l Text colour - the colour of the text
l Transparency - select Opaque for none, Base or Text Transparent to superimpose the effect onto other pro-
gramming

l Period - the number of seconds that themessage takes to scroll over thematrix
l Count - the number of times that themessage should scroll over the length of the preset
l Text - the text to render
l Font - the font to use to render the text (see the Fonts dialog below)
l Scroll - the scroll direction of the text
l Blend - the amount of crossfade at each end of thematrix
l Seamless loop - if the text is set to scroll, setting this will remove the gap between the end and the start
l Align - if the text is set to not scroll, this is the alignment of the text (Left, Centre, Right)
l Orientation - the rotation of the text
l Flip - flips the text top to bottom
l Mirror - flips the text left to right
l Offset - set a offset amount on the Y axis of thematrix

To configure the font used by the Text preset, press the Edit... button next to the font picker to open the Fonts dialog:

l Select a font from the Font picker
l Press New to create a new font
l Press Delete to delete the selected font (note that you cannot delete a font that is in use in the project)
l Set the font's name in the Name property
l Use Family, Size, Bold and Italic to set the appearance of the font
l Press Ok to close the Fonts dialog

NOTE:Editing a font will change all Dynamic text presets that use that font not just the currently selected preset(s).

- 135 -

Pharos Designer User Manual

The Text preset allows you to change the text after uploading the project to a Controller. To do this, you need to
specify which parts of the text are going to change and which parts will remain the same.

For example, to show the opening time of a venue, youmight set the Text property to "Opening Time: <open>". This
creates a text slot called 'open' which you can change the value of. You can havemore than one slot specified in the
Text property, for example "Opening Time: <open> Closing Time: <close>".

To set the initial text for a text slot, press the Configure... button next to the Text property to open the Text Slot
Configuration box:

l Click in the Default Value cell of a slot to edit the text stored in that slot
l You can remove unused text slots by pressing Remove
l Press Ok to save changes and Cancel to discard changes

The Set Text Slot trigger action allows you to change the value of a text slot from a trigger.

There are two built-in slots, <time> and <date>, which show the current time and date respectively. You can change
the format of how the time and date are displayed in the Text Slot Configuration box. Press the Configure... button
next to the Text property to open this dialog. At the bottom of the dialog you can select from some standard time and
date formats, or type your own using the following codes:

%a Abbreviated weekday name
%A Full weekday name
%b Abbreviatedmonth name
%B Full month name
%c Date and time representation
%d Day of themonth (01-31)
%H Hour in 24h format (00-23)
%I Hour in 12h format (01-12)
%j Day of the year (001-366)
%m Month as a decimal number (01-12)
%M Minute (00-59)
%p AM or PM designation
%S Second (00-61)
%U Week number with the first Sunday as the first day of week one (00-53)
%w Weekday as a decimal number with Sunday as 0 (0-6)
%W Week number with the first Monday as the first day of week one (00-53)
%x Date representation
%X Time representation
%y Year, last two digits (00-99)
%Y Year
%Z Timezone name or abbreviation
%% A% sign

All other text is used verbatim. The computed output will be truncated to 255 characters.

- 136 -

Preset Types and Properties

Live Video

Usewith: Pixel Matrices, VLC/ VLC+ Primary/Secondary

Displays live video on amatrix (LPC X only) or VLC/ VLC+ layout:

l X&Y offset - map to the top left pixel of interest on the incoming DVI image
l Black level - the intensity level below which rgb(0,0,0) should be output

To use Live video, the video input settings will need to be set.

User Presets
User Presets will show any preset configurations that you have saved.

User presets can be renamed by right-clicking on them and selecting Rename, and deleted by right-clicking and
selecting Delete

Scene
Scenes can be added to timelines as a way of generating reference palettes, or controlling advanced parameters of
complex fixtures.

Scene (User Named)

Usewith: Scenes

The presets that you optionally created using Scene to create static effects to play back within the project.

Note: If no Scenes have been created, the Scene folder will not be displayed.

Media Presets

Video (User Named)

Usewith: Pixel Matrices, VLC/VLC+ Content Target

The presets that you optionally created using theMedia window to import still andmoving images into your project.
These presets have spatial awareness when applied to Pixel Matrices and VLCs in that themedia clip will be resized
to fit the Pixel Matrix’s RenderWindow or the VLC/ VLC+ Content Target.

If applied to a VLC or VLC+ Content Target, themedia preset can be cropped using the Crop top, Crop bottom, Crop
left and Crop right to specify the area of themedia to be output to the Content Target. The crop value determines the
number of pixels that are cropped off each side of themedia preset.

Media clips in the Preset Browser can bemanaged in the sameway as inMappingMode, by Right-clicking on the
media clip, and New Media clips can be added using the New button at the top of the Preset Browser.

Media Presets have the following properties:

l Period - the number of seconds that themedia plays for within the preset
l Count - the number of times that themedia should play during the preset

- 137 -

Pharos Designer User Manual

l Start - set the in point of themedia
l End - set the out point of themedia
l Direction - the direction to play themedia in (forwards or backwards)
l Temperature - Adjust the colour temperature of themedia
l Flip - reflect themedia vertically
l Mirror - reflect themedia horizontally
l Crop left - the number of pixels to crop off the left hand side
l Crop right - the number of pixels to crop off the right hand side
l Crop top - the number of pixels to crop off the top side
l Crop bottom - the number of pixels to crop off the bottom side
l Black level - the level below which rgb(0,0,0) should be output

Note: If noMedia or Audio Presets have been created, theMedia Presets folder will not be displayed.

Audio (User named)

Usewith: Audio Rows

The presets that you optionally created using theMedia window to import audio into your project. These presets can
be used for Simulation Audio or Controller Audio (on LPC X, VLC or VLC+).

Audio Presets have the following properties:

l Start - set the in point of themedia
l End - set the out point of themedia

The Audio Preset on the timeline will display a representation of the waveform of the Audio file in the preset.

The top and bottom half of the waveform show themaximum andminimum amplitude of the wave during the
centisecond segment of audio respectively.

The left and right channels are shown as dark grey and light grey. (Left is light grey, right is dark grey, overlap is mid
grey.

Note: If no Audio or Media Presets have been created, theMedia Presets folder will not be displayed.

DALI Presets
Like Scenes, DALI presets do not have a length, only a transition, with the settings persisting until another DALI
preset is encountered.

However, unlike Scenes, DALI presets will persist even if the timeline is released. Indeed, since they are just
commands to tell the DALI ballasts what to do, even power-cycling the Controller will make no difference; the
settings will persist until a new command is issued or the ballasts themselves power-cycled.

Set Level

Usewith: DALI ballasts, groups or interfaces

- 138 -

Preset Types and Properties

Used to set a DALI fixture or user created group to a level (0>254, 255), and select a fade time from the pull-down list
of DALI fade times. See DALI regarding creating DALI groups.

Set Colour
Usewith: DALI ballasts, groups or interfaces (that support Colour commands)

Renders a static colour fill. Use the colour picker, user palette or text entry fields (RGB or HSI) to select the colour.

DALI fade time can be set as part of the preset.

Set Colour Temperature
Usewith: DALI ballasts, groups or interfaces (that support Colour Temperature commands)

Renders a static colour temperature fill. Use the level and colour temperature picker to select the colour temperature.

DALI fade time can be set as part of the preset.

DALI Scene (user Named)

Usewith: DALI ballasts, groups or interfaces

Used to recall a DALI scene that you created and uploaded, and select a fade time from the pull-down list of DALI
fade times. See DALI regarding creating DALI scenes.

NOTE: If there are no DALI fixtures in the project, the DALI Presets folder will not be displayed.

Custom Presets

Custom Preset (user Named)

Usewith: Pixel Matrices

Renders a Custom Preset that you have optionally created using theMedia window:

l Period - the number of seconds that the effect takes to complete one cycle
l Count - the number of times that the effect should cycle over the length of the preset

In addition, Custom Presets may define a number of properties that can be set for each instance of that Preset on
the timeline.

Note: If no Custom Presets have been created, the Custom Presets folder will not be displayed.

- 139 -

Pharos Designer User Manual

Timing, Transitions & Precedent
It is often said that good lighting as much about timing as anything else so it is important to understand the concepts
of timing and transitions used throughout Designer:

Timing
Timing values pertain to presets placed on timelines and determine the Start, End and Length times andmay be
numerically set as an alternative to dragging.

Transition Timing
Transition values pertain to presets placed on timelines and determine what sort of cross fade is rendered. The use
of interesting transitions can transform your project so it is well worth spending some time experimenting to see what
can be achieved using these properties:

Fade

Sets the overall length of the transition, default value is 2 seconds.

Release

Sets the time used for a preset to “release” its fixtures when it completes, default value is 2 seconds.

Path

Specifies the cross fade path, default is Default meaning that each pixel or parameter will use the library default path
(or Dimmer Curve if specified), typically Linear for intensity/position and Start for colour/gobo wheels. A variety of
paths are provided which provide overall crossfade paths.

- 140 -

Timing, Transitions & Precedent

Additional paths add the ability to specify the order that colour and intensity channels crossfade in, such that the
colour can fade then the intensity, for example.

l Col at Start
l Col at End
l Int at Start
l Int at End
l Colour First
l Intensity First

Viewing Transitions

The View Transitions button can be used to display the transitions for each preset on the timeline.

Transition Skews - Group & Scenes (1D)

Skew Type

Various different skews can be selected to alter how individual fixtures (and elements within fixtures in the case of
compound fixtures such as battens and tiles) behave within the fade, default is None whichmeans that all
fixtures/elements fade together. Use skews to create “multi-part” fades so that fixtures/elements fly in one by one for
example (set to Individually) - youmay have to increase the fade time to clearly perceive the skew especially with
lots of fixtures/elements.

Direction

The ordering of a skewed transition depends on the fixture/element ordering within the group. The Skew Direction
drop-down provides further ordering options such as Forwards and Backwards for additional flexibility. Additional

- 141 -

Pharos Designer User Manual

groups can be created with different fixture/element ordering to achieve other skewed effects.

Repeat

Specifies the number of adjacent fixtures/elements over which a skewed transition is applied, default is All meaning
that the skew will span the entire selection. Typically you set this value to be equal to the number of elements in a
compound fixture or the number of fixtures in a zone or on a truss, experimentation is recommended as interesting
effects can be achieved.

Buddy

Specifies the number of fixtures/elements that will fade together within a skewed transition, default is 1meaning that
each fixture/element will fade independently. Set to 2 tomake pairs fade together, 3 for threesomes etc. Again,
experimentation recommended.

Transition Skews - Matrix & Media Presets (2D)

Skew Type

Since the Pixel Matrices onto which you placeMatrix andMedia presets have spatial awareness, the available
skews aremore powerful and are akin to video wipes - youmay have to increase the fade time to clearly perceive the
skew.

% Fade

Sets the hardness of the skew; whether the edge of the wipe is hard (0%) or soft (100%).

Angle

Some skews (for example Linear or Radial Wipe) can optionally accept an angle value that alters the direction or
start point of the transition.

Specifying Times
Timing fields display times in the format hh:mm:ss.cc (hours:minutes:seconds.centiseconds), although leading
zeros are not displayed. 24 hours (24:00:00.00) is themaximum timeline length and thus timing duration.

When setting times you can enter in this format directly (omitting leading zeros) or you can use h, m & s to specify
your units and Designer will reformat accordingly. Furthermore, any number input without separators (h, m, s or :) is
taken literally if it is valid as such or converted if not, here a decimal point will always denote centiseconds.

For example:

00:01:30.00 1minute and 30 seconds (00:01:30.00)

- 142 -

Timing, Transitions & Precedent

1:30 1minute and 30 seconds (00:01:30.00)
90s 1minute and 30 seconds (00:01:30.00)
1h2.5m 1 hour, 2 minutes and 30 seconds (01:02:30.00)
2h7m45.5s 2 hours, 7minutes, 45 seconds and 50 centiseconds (half a second) (02:07:45.50)
99 1minute, 39 seconds ("99" not valid so converted) (00:01:39.00)
100 1minute,0 seconds ("100" valid so taken literally) (00:01:00.00)
2020 20minutes, 20 second (00:20:20.00)
30.1 30 seconds and 10 centiseconds (tenth of a second) (00:00:30.10)

Precedent
The Pharos Controllers use the Latest Takes Precedent Plus (LTP+) system (popularised by Flying Pig Systems in
the early 1990s) to determine what to output to a fixture (or, strictly speaking, fixture element or parameter) at
playback runtime. LTP+ was an enhancement of the standard LTP system and was designed to incorporate
automated lighting control. The "rules" of the LTP+ system are as follows:

1. After system initialisation, and prior to any preset (on a timeline) running, the output will be in a default,
"released" state. This does not mean that all DMX channels will be zero however as this default state is
determined by each fixture's library definition that will set parameters to sensible "home" positions, for
example pan and tilt to midway, irises and gobo/colour flags to open white.

2. The output will respond to the latest preset activated regardless of the preset data (so a preset programmed to
black will override a colour).

3. When a preset expires or is explicitly released the output will revert to the prior state whichmay be an over-
ridden preset (if any) or the default state.

4. Fixture parameters are grouped by kind (Intensity, Colour, Beam Image, Beam Shape, Position & Control)
and so preset programming and thus precedent operates at this level - multiple presets can thus be respons-
ible for the output of a fixture with multiple parameter kinds e.g. amoving light or conventional fixture with a
scroller.

Since the Controllers can runmultiple timelines simultaneously then some consideration should be given as to how
best structure the project. This is particularly important if the project calls for random triggering of timelines, for
example from a Button Panel Station (BPS), since there is no way of knowing in advance what state the output will
be in (i.e. which timelines have already been triggered) when a new timeline triggered. This interaction of timelines
can yield unexpected results unless care is taken when programming.

- 143 -

Pharos Designer User Manual

Timeline Audio
It is possible for the LPC X, VLC, VLC+ to output Audio from the Stereo connectors on the rear.

This audio will then be played synchronously with the lighting on the timeline.

Managing Timeline Audio
To Enable Timeline Audio

Timeline Audio is a feature that must be enabled from the Project Features page, and requires a suitable controller in
the project.

To Import Audio

Audio is imported in the sameway as video clips; fromMapping or theMedia Preset library.

To mute timeline audio during simulation

While simulating a timeline, it may be desirable tomute the audio temporarily. This can be done by selecting the

Mute button on theMode toolbar.

To Set the Default volume of the Timeline Audio

The volume of the Timeline Audio output is managed at a controller level.

To set the Default level, go to the controller's interface settings. This can be adjusted at runtime using the Set
Volume Action.

Imported audio should be normalised to avoid having to chance volume for different timelines.

Timeline Audio Properties
When an AudioMedia preset is added to a timeline, the following properties will be available:

l Start
l End
l Audio category

Start

This is the start point of the audio, this can be used to not play the start of the audio track

End

This is the end point of the audio, this can be used to not play the end of the audio track

- 144 -

Timeline Audio

Audio Category

There are two categories available, which treat the audio in different ways:

Background
A background audio track will be played back normally, and if another background track is started, the first will be
stopped.

Alert
An Alert track will playback over the top of a Background track, and will stop a playing alert track if another alert track
is started.

- 145 -

Pharos Designer User Manual

Interface Overview
Keyboard Shortcuts

Ctrl+N Create a new Interface
Ctrl+I Show interface properties
Alt+ select Colour Picker Sets the startup colour of the colour picker to the selected colour
Ctrl+drag on one or more control Creates a duplicate of the selected control/s

The Interface View is used to create custom User Interfaces for a Pharos Touch Panel Controller (TPC).

- 146 -

Working with Interfaces

Working with Interfaces
An interface is a group of pages which can be displayed on a TPC or TPS.

Managing Interfaces
Managing of Interfaces is handled from the Interface toolbar

New Interface

The New button allows you to create a new interface for your project. This will open a tool to configure the interface
properties:

- 147 -

Pharos Designer User Manual

Name
A user readable name for the interface

Orientation
The format in which to create the interface (Landscape or portrait)

Font
The font used for the Interface can be set here. You will need to locate a font file (*.ttf, *.ttc,*.otf, *.otc) on your
system. This font will be used for all text in your Interface.

Theme
The theme for the interface. See Built in Themes.

Note: Once the interface has been configured, the tool will prompt you to create the first page. See here for more
details.

Delete Interface

You can delete an Interface either through the Delete button on the toolbar for the active interface or through the
Manage dialog for inactive interfaces

Manage Interfaces

TheManage option allows you to Open interfaces which have previously been closed, along with deleting and
accessing the properties for inactive interfaces.

- 148 -

Working with Interfaces

Interface Properties

The Properties tool allows you to rename the interface at any time.

You can also setup the Lock functionality within the Interface.

Lock
When a TPC/TPS hasn't been touched for a period of time, it can be configured to go into a Lock state. This displays
a keypad on the screen which allows an unlock code to be input. This will then return the TPC/TPS to the normal
interface.

Unlock Code

The numerical code which needs to be input to unlock the TPC/TPS.

Unlock Function

- 149 -

Pharos Designer User Manual

Define whether the interface should return to the Home page or the page that was displayed when it locked.

Lock Timeout

Define the period of Inactivity before the TPC/TPS becomes locked.

Linking Interfaces to TPCs/TPSs

To link an Interface to a TPC/TPS, use the Touch Devices... option in the toolbar.

This will then list all TPCs/TPSs in the project and allow you to check all the TPCs/TPSs which should display the
active interface.

- 150 -

Working with Pages

Working with Pages
Pages are the core of a TPC Interface, they contain all the elements which can be used for control

Managing Pages

New Page

When you create a new Interface, youmust create the first page of the interface. Once the interface and first page
have been created, you can create additional pages with the New button on the Page toolbar.

These will both bring up a tool to create the page:

Name
A user readable name for the page

Icon
Each page can have an icon attributed to it. This is shown on Page Switchers. The icons offered will be from the
chosen theme, but youmay click the Browse button to choose your own.

- 151 -

Pharos Designer User Manual

Page Background

Set the page background, using either a colour, gradient or image. Some gradients are included with the application,
but a gradient editor is provided for you to create your own. The images offered will be from the chosen theme, but
youmay click the Browse button to choose your own.

Page Layout

- 152 -

Working with Pages

Pharos Designer comes preloaded with some layouts of controls. These will pre-populate your page with a set of
controls.

Navigation

Select a navigation type for moving between pages, choosing from a page switcher or navigation buttons.

Delete Page

You can delete the active page in the editor using the Delete button on the Page toolbar.

Duplicate Page

You can duplicate the active page in the editor using the Duplicate button on the Page toolbar.

By default, this will create a new set of controls on the page. If you want to copy the page and keep the control keys
the same, then there is a dropdown beside the Duplicate button which allows you to Duplicate (Keep Control Keys)

Page Properties
When a page is selected, the properties browser displays the properties of the page:

- 153 -

Pharos Designer User Manual

Number:A unique number used to reference the pages within an
interface.

Name:A user readable name to enable easy identification of the
page in the page browser

Icon: The icon displayed in a page switcher

Default: Is this page the default page that should be shownwhen
the interface loads?

Page Switcher:Define and edit the page switcher that should be
used on this page.

Background Colour:A single flat colour can be chosen with the
colour picker

Background Gradient:A user configurable gradient can be applied
as the background, and the rotation angle of the gradient can be
specified.

Background Image:A static image can be used as the
background, with image scaling options to stretch, zoom or tile the
image on the background.

- 154 -

Working with Controls

Working With Controls
Adding Controls
To add new control items to a page, simply select which control you would like to add then drag and release on the
page where you would like the control to be. You can add buttons, sliders, colour pickers, labels, keypads and
clocks.

Editing Controls

To edit controls that are already on the page, click and then select the controls you would like to edit. You can
now edit the controls by using your mouse tomove and resize the controls or move the controls by pressing the
arrow keys on your keyboard.

Duplicating Controls
It is possible to create duplicates of controls by copying and pasting, or using Ctrl+drag(Cmd + drag) to create a
duplicate of the selected control/s.

Deleting Controls
You can delete controls by selecting the controls and then clicking Delete.

Editing Layout Of Controls
Withmultiple controls selected you can use a variety of tools to alter their layout:

Icon: Layout control: Effect:
Layout selected controls horizontally Moves and resizes the selected controls to fill the

selection box with spacing between controls dic-
tated by the spacing value. Controls will be laid
out horizontally.

Layout selected controls vertically Moves and resizes the selected controls to fill the
selection box with spacing between controls
dictated by the spacing value. Controls will be laid
out vertically.

Layout selected controls in a grid Moves and resizes the selected controls to fill the
selection box with spacing between controls dic-
tated by the spacing value. Controls will be laid
out in a grid. This grid layout supports controls that
spanmultiple rows or columns.

Align selected controls to the left Moves the controls to the left-most point of the
selection box. Does not effect the Y axis or con-
trol size.

- 155 -

Pharos Designer User Manual

Align selected controls to the right Moves the controls to the right-most point of the
selection box. Does not effect the Y axis or con-
trol size.

Align selected controls to the top Moves the controls to the top of the selection box.
Does not effect the X axis or control size.

Align selected controls to the bottom Moves the controls to the bottom of the selection
box. Does not effect the X axis or control size.

Align selected controls to themiddle in a vertical line Moves the controls to the centre of the selection
box in a vertical line. Does not effect the Y axis or
control size.

Align selected controls to themiddle in a horizontal line Moves the controls to the centre of the selection
box in a horizontal line. Does not effect the X axis
or control size.

Note: The separation of the controls when using the layout options is defined by the Spacing option

Editing Control's Properties
The properties for a control can be edited using the Property Editor, when one or more controls are selected. If
multiple controls are selected, only common properties will be displayed and any changes will be applied to all
selected controls.

Common Properties
Caption - the text that appears on a button, defining its purpose. It is possible to include a line break in this caption
using "\n". If you require "\n" in your caption, you should use "\\n" to escape the first backslash. The caption of a
control can be changed via the Set TPC Control Caption trigger action in Trigger - see triggers for more information.

Key - the reference for the control within Trigger. By default this will be set to <control type>XXX, where <control
type> is 'button' or 'slider', etc. and XXX is a unique number for the control, which starts at 001 for a new project, e.g.
button123. Setting the control key to be the same for two controls will mean that they will fire the same trigger in
Designer. A single TPC trigger in Designer canmatchmultiple control keys through the use of variables. See
Variables for more information on using variables with TPC triggers.

Startup State - choose which state the item should be in when the Controller starts up.

X - The position, in pixels, of the control on the horizontal axis of the screen relative to the top left corner of the
control.

Y - The position, in pixels, of the control on the vertical axis of the screen relative to the top left corner of the control.

Width - The width of the control in pixels.

Height - The height of the control in pixels.

Button Properties

- 156 -

Working with Controls

Image - choose an image to display instead
of the themed shape of the button. Either
choose from button images already used in

the project or click to browse for a new
image. Images will be stretched to fill the
area of the button. Transparency in images
is supported. Overall transparency of the
button will still be determined by the current
theme. Click to remove the image and
return the button to the themed shape.

Font Size - set by default from the theme;
size of the font used to display the button
caption.

Horizontal alignment - The horizontal
alignment of the text in the button

Vertical alignment - The vertical alignment
of the text in the button

Word Wrap - set by default from the
theme; determines whether the caption of a
button will flow ontomultiple lines if
necessary.

Actuation - can be set to Momentary or
Maintained. Momentary indicates the
button will trigger a 'press' and 'release'
every time it's touched; Maintained
indicates the button will remain depressed
when tapped once, and will only release
when tapped again.

Held Timeout, Repeat Interval - specify
the length of time the buttonmust be held
before 'repeat' triggers begin firing and how
rapidly 'repeat' triggers fire.

Function - can be set to: None, Next Page,
Previous Page, Back, Go To Page,
Increase Brightness, Decrease Brightness,
Set Brightness. Each function has
associated sub-properties. For example, in
the screenshot below the Next Page
transition can be set to None, Pan Left or
Pan Right and a transition duration can be
set.

Page - if function is set to Go To Page,
select the page to go to

Transition - if function is set to Next Page,
Previous Page, Go To Page or Back, select
the required transition effect

Transition duration - if function is set to
Next Page, Previous Page, Go To Page or
Back, select the required transition duration
time

Level - if function is set to Set brightness,
set the required brightness.

IR Slot - This associates an IR slot with
the button. The IR slot can be activated by
an IR remote control, mimicking a button
being tapped.

- 157 -

Pharos Designer User Manual

Clock Properties

- 158 -

Working with Controls

Font Size - set by default from the theme;
size of the font used to display the colour
picker caption.

Horizontal alignment - The horizontal
alignment of the text in the caption

Vertical alignment - The vertical alignment
of the text in the caption

Spacing - set by default from the theme;
spacing between the colour picker wheel
and the caption text.

- 159 -

Pharos Designer User Manual

Colour Picker

- 160 -

Working with Controls

Startup Colour - select the colour that you
want the colour picker to be in at startup.
This can also be set by clicking on the
colour picker with Alt held down.

Font Size - set by default from the theme;
size of the font used to display the colour
picker caption.

Horizontal alignment - The horizontal
alignment of the text in the caption

Vertical alignment - The vertical alignment
of the text in the caption

Spacing - set by default from the theme;
spacing between the colour picker wheel
and the caption text.

- 161 -

Pharos Designer User Manual

Keypad Properties

- 162 -

Working with Controls

Max Digits - set themaximum amount of
characters that may be entered into a
keypad by the user at a time.

Caption horizontal alignment - The
horizontal alignment of the text in the
caption

Caption vertical alignment - The vertical
alignment of the text in the caption

Show digits - choose whether the
characters entered into a keypad are hidden
or shown.

- 163 -

Pharos Designer User Manual

Label Properties

Font Size - set by default from the theme; size of the font used to display the caption
text in the label.

Horizontal alignment - The horizontal alignment of the text in the label

Vertical alignment - The vertical alignment of the text in the label

Word Wrap - set by default from the theme; determines whether the caption of a
label will flow ontomultiple lines if necessary.

Slider Properties

Unit - this sets whether the value should be displayed as a percentage or 8-bit value
(0-255).

Startup Value - this sets where the slider is positioned at startup

Caption Font Size - set by default from the theme; size of the font used to display
the slider caption.

Caption horizontal alignment - The horizontal alignment of the text in the caption

Caption vertical alignment - The vertical alignment of the text in the caption

Show Value - whether the value of the slider is displayed next to it.

Value Font Size - set by default from the theme; size of the font used to display the
slider value.

Value horizontal alignment - The horizontal alignment of the value

Value vertical alignment - The vertical alignment of the value

Spacing - set by default from the theme; spacing between the slider and the first line
of text, and the spacing between the caption and value.

Handle Size - set by default from the theme; fraction of the slider track that is
occupied by the slider handle (0.05 - 0.95).

Increment IR Slot - this allows an IR slot to be associated with incrementing the

- 164 -

Working with Controls

slider level.

Decrement IR Slot - this allows an IR slot to be associated with decrementing the
slider level.

- 165 -

Pharos Designer User Manual

Page Navigation
Configuring Page Navigation
There are twomethods for managing navigation between pages for projects that contain multiple pages:

l Page Switchers
l Navigation Buttons

These can be created from the Navigation step of the new page wizard or by pressing New in the Page properties

Page Switchers
The position of a page switcher on the screen can be set along with its alignment. It is possible to use an existing
page switcher from another page, or alternatively youmay create a new page switcher.

- 166 -

Page Navigation

Properties

Layout
Edit pages...:Adjust the pages included in
the switcher and their order

Alignment: The alignment of the buttons
within the switcher

Labels
Show page names:Should the page name
be shownwith the icon

Font size: The size of the text labels

Text colour: The colour of the labels on the
switcher

Highlight colour: The colour highlight for the
current page

Highlight opacity:Set the transparency of
the highlight for the current page

Background
Gradient: The gradient to use on the switcher

Opacity: The opacity of the switcher's
background

Clock
Display:Choose whether to display the time
and/or date

Time/Date format:Specify the format of the
displayed date and time

Clock font size: Font size for the clock

Clock position:Where to put the clock on
the switcher

The pages in the page switcher can be adjusted later by right-clicking the page switcher in the Page Preview window
and selecting Edit Page Switcher.

- 167 -

Pharos Designer User Manual

Navigation Buttons
Navigation buttons can be positioned at the top or bottom of a page. Alignment options are Start, End, Center or
Spread. A maximum of three buttons can be added and each button's function can be set from the following list:

l Next Page (go to the page after this one, governed by the order shown in the page browser)
l Previous Page (go to the page before this one, governed by the order shown in the page browser)
l Back (go to whichever page was shown before the current page)
l Go To Page

The function of navigation buttons can be adjusted at any time by selecting the button in Page Preview and changing
the Local Function in the Property Editor:

- 168 -

Built-In Themes

Built-In Themes
Pharos Designer comes with some built-in themes that youmay use directly in your projects, or edit with the Theme
Editor as required. Knowledge of the states in a theme for each item (e.g. buttons, sliders, etc.) is useful when using
the Set TPC Control State action in Designer. Changing the state of an item will change its appearance, and this
allows you to provide feedback in your interface.

The built-in themes are as follows:

l Dark
l Light
l Aurora
l City
l Lite

Extra TPC Themes are available from our website.

- 169 -

http://www.pharoscontrols.com/downloads/resources/tpc-interface-themes/

Pharos Designer User Manual

Dark Theme
The Dark theme is included with Designer. It has the following states for items:

Button States

The following states are shown in the image above:

l Black (default)
l Blue
l Cyan
l Green
l Magenta
l Orange
l Purple
l Red
l Silver
l Yellow

- 170 -

Dark Theme

The following states are shown in the image above:

l Black Dim
l Blue Dim
l Cyan Dim
l Green Dim
l Magenta Dim
l Orange Dim
l Purple Dim
l RedDim
l Silver Dim
l Yellow Dim

- 171 -

Pharos Designer User Manual

Slider States

The following states are shown in the image above:

l Black (default)
l Blue
l Cyan
l Green
l Magenta
l Orange
l Purple
l Red
l Silver
l Yellow

- 172 -

Dark Theme

The following states are shown in the image above:

l Black (default)
l Blue
l Cyan
l Green
l Magenta
l Orange
l Purple
l Red
l Silver
l Yellow

- 173 -

Pharos Designer User Manual

Label States

The following states are shown in the image above:

l Blue Text (default)
l Normal
l White Text
l White Background
l Warning Text

- 174 -

Light Theme

Light Theme
The Light theme is included with Designer. It has the following states for items:

Button States

The following states are shown in the image above:

l Blue(default)
l Cyan
l Green
l Magenta
l Orange
l Purple
l Red
l Silver
l Yellow

- 175 -

Pharos Designer User Manual

The following states are shown in the image above:

l Blue Dim
l Cyan Dim
l Green Dim
l Magenta Dim
l Orange Dim
l Purple Dim
l RedDim
l Silver Dim
l Yellow Dim

- 176 -

Light Theme

Slider States

The following states are shown in the image above:

l Blue (default)
l Cyan
l Green
l Magenta
l Orange
l Purple
l Red
l Silver
l Yellow

- 177 -

Pharos Designer User Manual

The following states are shown in the image above:

l Blue
l Cyan
l Green
l Magenta
l Orange
l Purple
l Red
l Silver
l Yellow

- 178 -

Light Theme

Label States

The following states are shown in the image above:

l Blue Text (default)
l Normal
l White Text
l White Background
l Warning Text

- 179 -

Pharos Designer User Manual

Aurora Theme
The Aurora theme is included with Designer. It has the following states for items:

Button States

The following states are shown in the image above:

l Silver (default)
l Red
l Green
l Cyan
l Magenta
l Yellow
l Orange

The following states use the same colours as the above, but they cause the opacity of the button to vary over a
period of 1 second to attract attention.

l Silver Flashing
l Red Flashing
l Green Flashing
l Cyan Flashing
l Magenta Flashing
l Yellow Flashing
l Orange Flashing

- 180 -

Aurora Theme

The following states are shown in the image above:

l Silver Dim
l RedDim
l Green Dim
l Cyan Dim
l Magenta Dim
l Yellow Dim
l Orange Dim

- 181 -

Pharos Designer User Manual

The following states are shown in the image above:

l Silver Highlight
l RedHighlight
l Green Highlight
l Cyan Highlight
l Magenta Highlight
l Yellow Highlight
l Orange Highlight

- 182 -

Aurora Theme

Slider States

The following states are shown in the image above:

l Silver (default)
l Red
l Green
l Cyan
l Magenta
l Yellow
l Orange

- 183 -

Pharos Designer User Manual

The following states are shown in the image above:

l Silver Highlight
l RedHighlight
l Green Highlight
l Cyan Highlight
l Magenta Highlight
l Yellow Highlight
l Orange Highlight

- 184 -

Aurora Theme

Label States

TheNormal state (default) is shown in the image above.

TheWarning Text state is shown in the image above.

- 185 -

Pharos Designer User Manual

TheWarning Background state is shown in the image above.

- 186 -

City Theme

City Theme
The City theme is included with Designer. It has the following states for items:

Button States

The following states are shown in the image above:

l Sky Blue (default)
l Lilac Tint
l Pale Lavender
l Light Red
l Light Pink
l Soft Amber
l SeaGreen
l Pale Green
l Silver

The following states use the same colours as the above, but they cause the opacity of the button to vary over a
period of 1 second to attract attention.

l Sky Blue Flashing
l Lilac Tint Flashing
l Pale Lavender Flashing
l Light Red Flashing
l Light Pink Flashing
l Soft Amber Flashing
l SeaGreen Flashing
l Pale Green Flashing
l Silver Flashing

- 187 -

Pharos Designer User Manual

The following states are shown in the image above:

l Sky Blue Dim
l Lilac Tint Dim
l Pale Lavender Dim
l Light Red Dim
l Light Pink Dim
l Soft Amber Dim
l SeaGreen Dim
l Pale Green Dim
l Silver Dim

- 188 -

City Theme

Slider States

The following states are shown in the image above:

l Sky Blue (default)
l Lilac Tint
l Pale Lavender
l Light Red
l Light Pink
l Soft Amber
l SeaGreen
l Pale Green
l Silver

- 189 -

Pharos Designer User Manual

Label States

TheDefault state is shown in the image above.

TheWarning Text state is shown in the image above.

- 190 -

City Theme

TheWarning Background state is shown in the image above.

- 191 -

Pharos Designer User Manual

Lite Theme
The Lite theme is included with Designer. It has the following states for items:

Button States

The following states are shown in the image above:

l Sand (default)
l Olive Green
l Red
l Blue

- 192 -

Lite Theme

The following states are shown in the image above:

l Sand Dim
l Olive Green Dim
l RedDim
l Blue Dim

- 193 -

Pharos Designer User Manual

Slider States

The following states are shown in the image above:

l Sand (default)
l Olive Green
l Red
l Blue

- 194 -

Lite Theme

Label States

TheDefault state is shown in the image above.

- 195 -

Pharos Designer User Manual

Theme Editor
The theme editor facilitates the creation and editing of custom TPC themes. It allows you to add and edit background
images, icons and item states.

Click Theme Editor on the toolbar to launch the theme editor.

Editing A Project Theme
The theme editor has three tabs for editing different aspects of a theme.

Editing Item States

Default Item Properties - these set default values for certain properties that will be applied to an item when it's
created for the first time. These properties can usually be edited in themain property editor of Interface view.

Item States - Select a state to edit its properties. The default state is shownwith "(Default)" after its name. Double-

click a state (Windows) or press the Enter key (OS X) to rename the selected state. Click to add a new state.

Click to delete a state (not possible for the default state). Click to duplicate a state. The state of an item can
be changed using a Set TPC State action (see Actions for more details) for more information about TPC actions.

State Property Editor - Edit the properties of the selected state. Works in the sameway as themain property
editor.

State Transition Editor - Edit the transition that is applied to the item properties when the current state is applied to
the item. Easing is the curve that property values will follow.

- 196 -

Theme Editor

Editing Background Images

Click to add a new background image from a file. Click to remove the currently selected images from the
theme. The image files will not be deleted.

You can set the orientation of images so that they are only offered as backgrounds for projects of the same
orientation. If the image isn't specific to an orientation, for example if it's meant for tiling or centring on the screen,
then set its orientation to 'Any'. Youmay filter which images are shown using the drop down near the top of the
window.

- 197 -

Pharos Designer User Manual

Editing Icons

Click to add a new icon from a file. Click to remove the currently selected icons from the theme. The image
files will not be deleted.

Note:When using .svg files for images, ensure they use the SVG Tiny 1.2 profile. If in doubt, please contact
support.

Export Project Theme
The Theme Editor launch button has an option to export the theme in the current project. This is useful for using the
same theme on different projects.

You can access this option using the arrow to the right of the Theme Editor button

To export a theme you will have to provide a file name as well as a directory for the theme to be saved to.

Creating A New Theme
To create a new theme you will need to create a new interface and go to the "Select the Theme" page. Click on the

at the top of the window to create a new theme. You'll need to give the new theme a file name and choose a file
path. You'll also need to choose a theme to use as a template.

- 198 -

Theme Editor

You will now see the Theme Editor where you can edit item states in the new theme.

Saving Changes To A Theme

Click Done when you've finished editing the theme and your changes will be saved to the theme file. If you're
creating a new theme, the themewill now be shown in the theme browser and offered when you create a new
interface.

- 199 -

Pharos Designer User Manual

Trigger Overview
Keyboard Shortcuts

Ctrl+N Create a new trigger of the last created type
Ctrl+left-click on a trigger, condition or
action Toggles its selection

Shift+left-click Select a range of triggers, conditions or actions

Ctrl+A When nothing is selected, select all triggers; when a condition or action
is selected, selects all conditions/actions of the parent trigger

HoldCtrl while dropping a dragged
trigger Create a copy of the trigger at the drop location

HoldShift while dropping a dragged
condition or action Move the condition or action to the trigger it is dropped on

Delete/Backspace Delete selected triggers, conditions or actions
Up/Down Move current row indicator up and down, and select the row
Shift + Up/Down Move current row indicator up and down, and add the row to the selection
Ctrl + Up/Down Move current row indicator up and down, but don't change the selection
Left/Right Collapse/Expand current trigger
Space Select current row
Ctrl + Space Add current row to the selection
Ctrl+B in Script Editor Compile script

The Trigger window is used to “connect” your timeline programming to the outside world:

Controllers support a range of interfaces which can be used to Trigger the playback engine including an internal real
time & astronomical clock. For example, digital input #1 (connected to a wall panel) could be set to start “Funky”

- 200 -

Trigger Overview

timeline, “Advert” can be set to run on the hour every hour between sunrise and sunset and, at sunset, “Cleaning”
would start.

This tab contains two sections. Themain section in themiddle is the Trigger management area

Creating A Trigger
To create a Trigger, click New Trigger in either the Trigger toolbar or the Configuration Pane. Select the required type
from the searchable dropdownmenu, see Triggers.

Configuring a Trigger

l Type - the Trigger type
l Number - the Trigger's unique number as used forWeb Interface control purposes (can typically be left at the
default value unless creating custom pages)

l Name - an identifier for the Trigger used in the Trigger Management Area, Simulate andWeb Interface
l Description - amore detailed description for use in Reports.
l Group - the group that the Trigger belongs to (defined by colour) e.g. Red = outside, Green = inside
l Controller - the controller that will process the Trigger, note that Real Time, Astronomical, Ethernet Input and
IO Module Triggers are processed by the Network Primary. Note: This is only available if the feature is activ-
ated (using advanced feature option)

l Test conditions on - Certain circumstances will require a condition to be tested on a device separate to the
device receiving the trigger (e.g. Touch control trigger needing to test timeline status on LPC)

l Absorbed - uncheck to prevent the Trigger absorbing thematch, see below
l Included - uncheck to hide this trigger from the controller's Web Interface and Director
l Enabled - uncheck to prevent the Trigger from running
l Parameters - the data required for each Trigger type, varies by type so refer to the appropriate Trigger descrip-
tions. Note that if a parameter only has one option (e.g. only one timeline in the project), then it will be selec-
ted by default.

Inhibiting a Trigger

For testing purposes it is sometimes useful to inhibit one or more Triggers to examinemore clearly the operation of
others. A Trigger can be inhibited by unchecking the Enabled box in the Trigger configuration, the row details will be
displayed in a grey .

Hiding a Trigger

By Default Triggers are available to be viewed and fired from various locations, including the Default Web Interface,
and Director. To prevent triggers from being visible in these locations, they can be hidden using the Included
checkbox within the Trigger properties.

Trigger Numbering
Undermost circumstances the trigger numbers have no bearing on the operation of the project file, however when
using the Enqueue Trigger action, the Trigger number is used to define the Trigger to fire.

It can be desirable to change the numbering of Triggers such that they are continuous through the project once all
triggers are created and put in order (see below). This can be achieved by manually changing the Trigger numbers in
the trigger properties or:

- 201 -

Pharos Designer User Manual

l Selectingmultiple triggers
l Right-clicking on a selected trigger
l Choosing Renumber triggers...

In the popup window, the Starting number can be set, e.g. if a set of triggers relating to a section of the project should
be together in the 10xx range.

The popup also lets you choose whether to update any affected Enqueue Trigger actions.

The selected triggers will be numbered incrementally from the starting number in the order that they are present in the
trigger list.

Trigger Order & Matching
The order in which Triggers are displayed in the Trigger Management Area is the order in which they are tested by the
system. Once a Trigger is successfully matched then, if "Absorb onmatch"is checked, no further Triggers are tested
for that event; the event is absorbed. Thus this Trigger order is important, particularly when using Conditions.

If you had two identical Triggers in your show then, assuming they had no Conditions, only the first one encountered
would ever bematched. However, if you add a Condition to the first Trigger then it will only match when the
Condition is true, and when it is false the second Trigger will match instead.

The ability to have the same Trigger have different results based on a Condition is very powerful. For instance you
might have a single digital input that starts one timeline during the day and another during the night.

Changing The Trigger Order

You can select and drag the Trigger up or downwithin themanagement area to redefine the order

Absorb On Match

In some cases it is useful for amatched Trigger not to absorb the event and thus allow Triggers further down the list,
so there exists the option to disable the default behaviour (for Triggers other than Real Time & Astronomical clock
which default to unchecked) by unchecking the "Absorb onmatch" box for each Trigger as required.

Conditions
If you wish to constrain the Trigger with a Condition then use the New Condition button in either the Trigger Toolbar
or the Condition Configuration area. Select the required type from the searchable dropdownmenu, see Conditions.

Up to 50 Conditions can be applied to each Trigger in this way and you can select each one for configuration from the
Trigger Management Area.

Configuring A Condition

l Type - the Condition type
l Negate - check to invert the operation of the Condition i.e. if the Condition does not match
l Parameters - the data required for each Condition type, varies by type so refer to the appropriate Condition
descriptions. Note that if a parameter only has one option (e.g. only one timeline in the project), then it will be
selected by default.

- 202 -

Trigger Overview

Changing The Condition Order

To change the order in which Conditions are tested, select the Condition in the Trigger Management Area and drag it
to the required location within the Trigger.

Actions
Every Trigger needs an Action, the thing to do, which you can add to a Trigger using the New Action button in either
the Trigger Toolbar or the Action Configuration area. Select the required type from the searchable dropdownmenu,
see Actions.

Up to 50 Actions can be applied to each Trigger in this way and you can select each one for configuration from the
Trigger Management Area.

Configuring An Action

l Type - the Action type
l Controller - the controller that will process the Action
l Parameters - the data required for each Action type, varies by type so refer to the appropriate Action descrip-
tions. Note that if a parameter only has one option (e.g. only one timeline in the project), then it will be selec-
ted by default.

Changing The Action Order

To change the order in which Actions are executed, select the Action in the Trigger Management Area and drag it to
the required location within the Trigger.

Copying A Trigger, Condition Or Action
Select the Trigger, Condition or Action to be copied in themanagement area and use the Copy option in the
appropriate section of the Trigger Toolbar or right-click > Duplicate [Trigger, Condition or Action] to create a duplicate
immediately below the current selection. When you duplicate a Trigger, the Conditions and Actions for that Trigger
are duplicated as well.

To create a copy of an Action in a different Trigger, you can select the Action in the Trigger Management Area and
drag it into the destination Trigger.

Deleting A Trigger, Condition Or Action
Select the Trigger, Condition or Action to be deleted in themanagement area and use the Delete option in the
appropriate section of the Trigger Toolbar or right-click > Delete [Trigger, Condition or Action] delete the current
selection. When you delete a Trigger, the Conditions and Actions for that Trigger are deleted as well.

Trigger Filtering
To filter Triggers by their group, you can use the Filter... option in the Trigger Toolbar. The Filter toolbar will be
shown:

- 203 -

Pharos Designer User Manual

You can filter Trigger by their Type or by their Group.

You can disable filtering by Type andGroup with the appropriate checkboxes.

Lua Script Editor
The Lua Script Editor allows you to edit scripts from Triggers, Conditions and Actions within Designer. The Script
Editor is launched by pressing the Scripts & Modules button on the Trigger Toolbar, and selecting Scripts in the
bottom pane:

Themain area of the editor is the code editor where you enter the source code of the script. The code editor will
colour the Lua syntax to aid readability. Standard clipboard shortcuts and undo/redo are supported.

To create a new script for use in Conditions or Actions click New Script.

Scripts can be opened using the Open option and closed with the on the Script Tab.

To import a Lua script from an external file, use Import.

To save a Lua script to a file, use Export.

To compile the script and check for syntax errors, use Build. If there are errors in the script, they will be displayed at
the bottom of the window.

Changes to scripts are saved automatically.

Find

Pressing Ctrl(Cmd) + F will open the find bar in the script editor.

This allows you to search for text within your script.

Aa If selected, the casemust match
|Abc| If selected, the whole wordmust match
.* If selected, Regular Expressions can be used in the search box

- 204 -

Triggers

Triggers
A Trigger is an event that the controller receives which can then be used to tell the controller to do something. It is
the IF part of an IF THEN statement.

Example:

IF (Real Time is 10:00:00) THEN (Start Timeline 1)

The Real Time Trigger will fire whenever the built in Real Time clock tells the controller that it is 10:00:00, and
the controller will then Start Timeline 1.

There aremany different trigger types available, each linking to a different internal or external triggering situation.

Clock/Calendar Triggers
Clock/calendar triggers use the controller's real time clock to fire triggers based on the current time, or astronomical
or lunar events such as Sunset or the Full Moon. These triggers are often used when a schedule is required for the
project. This could be as simple as starting a light show at sunset and stopping it at sunrise.

Real Time

The Controller has an internal, battery-backed real time clock. In a project with multiple Controllers only one
Controller is set as the Network Primary (see Controller association), use the configuration settings to
determine what sort of real time event will bematched, for example 5minutes past every hour or at noon on a
specific date.

The standard dialog allows you to deal with themost common cases, including one-off events or events that
recur hourly, daily or weekly. Note that themaximum resolution of real time events is 1 second, so an "Any
Time" trigger will fire every second during the specified date range:

- 205 -

Pharos Designer User Manual

There is also an advanced dialog that allows you to specify a precisemask of when the trigger should fire, using
a combination of year, month, day of themonth, day of the week, hour, minute or second. Highlighted values are
included in themask andmake sure all values are highlighted in any column you don't care about. The trigger
will fire at all times that match the specifiedmask in all columns - so no column should be blank or the trigger will
never match:

Further information about the use of the real time clock can be found in the conditions chapter.

In the Network view, a Controller properties option exists to "execute real time triggers on startup". This will
ensure that all real time triggers are executed from a user-specified time to the current time to reinstate the
correct playback state in case the Controller is restarted for some reason (e.g. power loss, watchdog or remote
reset).

- 206 -

Triggers

NOTE:Real Time triggers are only tested by the Network Primary and then shared over the network so any
conditions are tested on the Network Primary only.

Astronomical

The Controller is also equipped with astronomical clock algorithms which automatically generate the correct
sunrise, sunset, dawn and dusk times for the location of the installation (see project properties). Use the
configuration pane to select between sunrise, sunset, dawn or dusk and to specify an offset, negative or
positive, in minutes. A negative offset will be the specified number of minutes earlier, and a positive offset will
be later.

Two versions of dawn and dusk are offered, using the two definitions of twilight: civil and nautical. Please see
Wikipedia for an explanation of these terms.

A Controller properties option exists to ensure that all astronomical triggers are executed from a user-specified
time to the current time to reinstate the correct playback state in case the Controller is restarted for some reason
(e.g. power loss, watchdog or remote reset).

NOTE:Astronomical triggers are only tested by the Network Primary and then shared over the network so any
conditions are tested on the Network Primary only.

Lunar

As well as astronomical triggers the Controller uses lunar clock algorithms to calculate the lunar phases based
on the location of the Controller (see project properties).

The lunar events are new moon, first quarter, full moon and third quarter. Use the configuration pane on the right
to select the phase.

NOTE: Lunar triggers are only tested by the Network Primary and then shared over the network so any
conditions are tested on the Network Primary only.

Playback Triggers
A playback trigger is fired by an event involving a timeline or scene, or by the controller booting. These could be used
to start a particularly timeline when the controller boots, or to always start a timeline when another has finished.

Startup

The startup trigger determines what the Controller should do after power up or reset. There are no configuration
options.

Timeline Started

A timeline starting (generally as a result of a trigger or the timeline looping) can be used as a trigger, use the
configuration pane to select which timeline.

- 207 -

http://en.wikipedia.org/wiki/Twilight

Pharos Designer User Manual

Timeline Ended

A timeline reaching the end of its programming can be used as a trigger, use the configuration pane to select
which timeline. For a looping timeline, this trigger will fire every time the timeline loops.

Timeline Released

A timeline releasing can be used as a trigger, use the configuration pane to select which timeline.

Timeline Flag

Any timeline can have one or more flags placed on the time bar (see working with timelines) to act as triggers,
use the configuration pane to select which timeline and the flag within that timeline.

Timeline can be set to any tomatch any flag in the project. The timeline number will be captured as a variable.

Flag can be set to any (with a specified timeline) to match any flag in that timeline. The time of the flag (in
milliseconds) will be captured as a variable.

Scene Started

A Scene starting (generally as a result of a trigger or a timeline preset being used) can be used as a trigger, use
the configuration pane to select which Scene.

Scene Released

A Scene releasing (generally as a result of a trigger or a timeline preset being used) can be used as a trigger, use
the configuration pane to select which Scene.

Interactive Triggers
Interactive Triggers are triggers which respond to an input from a human (generally). These include push buttons on
the Pharos BPS and TPC/TPS and other TPC/TPS controls. You would use these triggers if you have a TPC/TPS in
your project and need to act upon interaction with the controls on the interface.

Soft Trigger

This trigger type is provided for triggering from the web interface, there are no configuration options.

Digital Input

The LPC and TPC with EXT have 8 digital inputs which can be used as triggers, either to detect a voltage or a
contact closure. Use the configuration pane to select which Controller (Any or a particular LPC or TPC with
EXT), which Input (1 through 8) and the polarity of the logic - select Low for contact closure or when driving with
an "active low" signal, select High for driving with an "active high" signal.

- 208 -

Triggers

The Input can also be set to Low Held or Low Repeat. These will use the Held Timeout and Repeat Interval
settings to fire the trigger once the Input has been low for the Held Timeout or every Repeat Interval after the
Input goes Low.

The Clicked option can be used to fire the trigger when it changes to Low and back to High.

To receive a digital input from a Pharos Remote Device, change the Device to RIO 80 or RIO 44 and set the
RIO number, or leave as Any. The RIO 80 has 8 inputs and the RIO 44 has 4 inputs.

The inputs on the LPC and TPC with EXT hardware and the RIOs can also be configured as analog inputs in the
Network Mode.

BPS Button Event

The BPS has eight buttons which can be used as triggers.

Use the configuration pane to select which Controller should process the trigger. Select the BPS, button number
(or leave as Any - see variables) and the type of button event (Press, Held, Repeat, Release, Clicked). Setting
the button number toAny will capture the pressed button as a variable.

TPC/TPS Triggers

Touch Button Event

Whenever a button in a TPC/TPS user interface is touched, triggers of this type will be checked for a
match.

The Button field should be set to the Control Key of the button you're interested in - this is a property of
buttons that is set in Interface. Either pick a control key from the list, or type it in.

The Event defaults to 'Click', which is a complete press and release touch action. Other options are Press,
Release, Held and Repeat, like the BPS Button trigger.

Touch Slider Move

Whenever a slider in a TPC/TPS user interface is moved, triggers of this type will be checked for amatch.

The Slider field should be set to the Control Key of the slider you're interested in - this is a property of sliders
that is set in Interface. Either pick a control key from the list, or type it in.

Touch Colour Change

Whenever a colour picker in a TPC/TPS user interface is touched, triggers of this type will be checked for a
match.

The Picker field should be set to the Control Key of the colour picker you're interested in - this is a property
of colour pickers that is set in Interface. Either pick a control key from the list, or type it in.

- 209 -

Pharos Designer User Manual

Touch Page Change

Whenever the current page of a TPC/TPS user interface is changed, triggers of this type will be checked for
amatch. Set the Controller number to a particular TPC/TPSin order to populate the Page drop down list
from the Interface.

The Page field should be set to the name of the page you're interested in - this is a property of pages that is
set in Interface. Either pick a page name from the list, or type it in. You can also specify wether you want
the trigger to fire when entering or leaving that page.

Touch Keypad Code

When the Enter key on a keypad is pressed, triggers of this type will be checked for amatch.

The Keypad field should be set to the Control Key of the keypad you're interested in - this is a property of
keypads that is set in Interface. Either pick a control key from the list, or type it in.

Touch Inactivity

Whenever the sleep/awake state of a TPC/TPS screen is updated, triggers of this type will be checked for a
match.

Choose whether to trigger after a period of inactivity or when the TPC/TPS becomes active (is touched)
again.

The timing for when the controller is set to inactive is in the Controller Properties area of the Network tab.

Protocol Triggers
Protocol Triggers are generally triggers which include communication with another device using a command protocol
such as Serial (RS232/485), Lighting control data (DMX/eDMX/DALI) and Ethernet (TCP/UDP). These would be
used when another device is used which can communicate with one of these protocols, and they could be used to
start a timeline when a particular string is received from another device, or to set the intensity of a group of fixtures
based on an Audio input.

Commands
Protocol Command triggers can be used when a specific message is being send to a controller by another
control system or device. These could be an ASCII string sent over Serial which should cause a timeline to start
or aMIDI message from a Show control system to turn down the house lights in a performance space.

Serial Input

RS232 remains a very popular protocol for interfacing equipment and the RS232 port of a Controller or
Remote Device can be configured to support most common data formats. RS485 is amore robust
alternative to RS232 (better noise immunity, longer cable lengths and faster data rates) and is a widely
supported protocol. A Controller or Remote Device can be configured to receive RS232 full-duplex or

- 210 -

Triggers

RS485 half-duplex in the Network view, see Controller interfaces and Remote Devices. A TPC with EXT
can receive RS232 full-duplex.

To receive serial from aController's serial port, leave Device as Local and use the Controller setting to
specify which Controller's serial port should be considered the input source.

For the old LPC Xs with 2 serial ports, the Port setting selects which of the two RS232 ports should be the
input source.

Alternatively, set the Device to a RIO and select the RIO number.

Now define the string of input characters to bematched as the trigger. There are three formats in which
serial strings can be entered:

Hex A series of hexadecimal characters (0-9, a-f, A-F) where pairs of values are interpreted
as a byte.

Decimal A series of decimal characters (0-255) separated by "." characters.

ASCII A series of ASCII characters. The special characters '\n' for new line, '\r' for carriage
return, and '\t' for tab are supported.

Additionally, each byte can be replaced with a wildcard tomatch a range of input characters and these
wildcards can even be captured as variables to determine the trigger's action.

Ethernet Input

Use the Controller setting to specify which Controller should process the Ethernet input. Select the
Ethernet Source (see Controller interfaces) and press Edit to define the string of input characters to be
matched as the trigger in much the sameway as RS232 (see above).

Note: Themaximum input string size is 1.5kB. Any input larger than this will result in a second trigger being
fired.

MIDI Input

MIDI is another very popular protocol for interfacing equipment and theMIDI input trigger allows you to
define, via a convenient MIDI Message Builder, the type (Short message, MIDI Show Control or Extended)
and command string that is to bematched as the trigger. Variables can be captured to determine the
trigger's action.

Use the Controller setting to specify which LPC's MIDI port should be considered the input source. To use
theMIDI port on a RIO A, set the Device to RIO A and specify the RIO A number, or leave this as Any. In
this case, the RIO number will be captured as a variable.

Press Edit to open theMessage Builder:

- 211 -

Pharos Designer User Manual

Press Add, select one of the threemessage types and then the specific command and variables.

Press Delete to delete a command string.

The resulting hexadecimal string will be constructed automatically and displayed in the window for
reference with questionmarks ("??") indicating undefined characters in MIDI Show Control (since we do not
know in advance how many characters will be captured) or <c>, <d> and <x> as appropriate for Short and
Extendedmessages.

Press Ok to finish.

A comprehensive guide toMIDI is beyond the scope of this document, see theMIDI Manufacturers
Association for more details, and themanual for the equipment to be interfaced will also certainly be an
invaluable reference.

Remote Device Online

Use this trigger, not the Startup trigger (which will fire before the Remote Devices can be detected), if you
wish to act upon the detection of a Remote Device, for example to configure it with settings other than its
defaults.

Use the configuration pane to select which Controller should process the trigger and select the Remote
Device's type and identification number (or leave as Any - see variables).

- 212 -

http://www.midi.org/about-midi/abtmidi.shtml#protocol
http://www.midi.org/about-midi/abtmidi.shtml#protocol

Triggers

Remote Device Offline

Use this trigger if you wish to act upon the loss of a Remote Device, for example to enter a fail safe state
and issue a warning.

Use the configuration pane to select which Controller should process the trigger and select the Remote
Device's type and number (or leave as Any - see variables).

Live Video Signal

Use this trigger to act upon the presence or absence of Live video.

Use the configuration pane to select which Controller should process the trigger and select the Event
(Signal lost/Signal found).

DALI Triggers
DALI Triggers are specifically used to trigger based uponmessages travelling on a specified DALI bus. This
allows integration of a Pharos Controller with another DALI controller, so that a timeline for someDMX fixtures
can be started at the same time as a DALI command is sent.

DALI Input

RIOD or TPC with EXT required.

To use a TPC with EXT as the input source, use the Controller setting to specify which Controller has the
EXT and leave the Device as Local.

To trigger from aRIOD, set Device to RIOD and select the number of the RIOD, or leave this set toAny to
cause the trigger to attempt to match against DALI input from any RIOD. In this case, the RIOD number
will be captured as variable.

The RIOD and TPC with EXT snoop the DALI bus and so the trigger can be set up to respond to any DALI
commands:

l Command - select Direct Level (0>254), Scene or Relative Level
l Address - select All, Group (0>15) or Ballast (1>64)
l Min/Max - select the level to match for Direct Level triggering or
l Scene - select the scene (1>16) for Scenematching or
l Type - select the type of Relative Level command tomatch

The RIOD and EXT both recognise DALI input from Light Sensors andOccupancy Sensors that utilise
Tridonic eDALI commands. When triggering from anOccupancy Sensor select which state is to be
matched. When using a Light Sensor, specify what range of light level (0>254) is to bematched. See the
table below for light levels:

Light Sensor Level Lux Range
0 - 31 0.00 - 7.75
32 - 63 8.00 - 15.75
64 - 95 16.00 - 31.75

- 213 -

Pharos Designer User Manual

96 - 127 32.00 - 63.75
128 - 159 64.00 - 127.75
160 - 191 128.00 - 255.75
192 - 223 256.00 - 511.75
224 - 254 512.00 - 1008.00

Note: Light Sensor andOccupency sensor commands require the Tridonic custom DALI commands
Project feature to be enabled

DALI Bus Power

RIOD or TPC with EXT required.

Use this trigger if you want to act upon a change of the electrical state of a specific DALI bus. Buses can be
in one of three states: Correct Power, Incorrect Power and No Power.

DALI Ballast Error

RIOD or TPC with EXT required.

Use this to trigger from aDALI ballast reporting an error. Specify the interface then use All to match if any
ballast on that interface reports an error. Alternatively select a single address tomatch to. Next select the
error type tomatch to.

Dynamic
Dynamic Triggers tend to receive a value which can be anywhere within a range (e.g. DMX 0-255). These inputs
generally have the Changes in Range event and Enters range event, so that a trigger can be fired whenever the
input changes or only when it crosses a threshold. This could be used to set the intensity of some fixtures
whenever a DMX input changes, or start a timeline when a sensor connected as an analog input passes a
threshold (e.g. wind speed)

Analog Input

The revised LPC and TPC with EXT hardware has 8 inputs that can be configured as digital or analog inputs
in the Interfaces tab of the Network view. The RIO 80 and RIO 44 have inputs that can be configured as
digital or analog inputs in the Remote Devices tab of the Network view.

Use the Controller and Input settings to specify which Controller’s analog input should be considered the
input source. Alternatively, leave the Input set toAny to match any of the inputs of the Controller and to
capture the input as a variable. To use a RIO's input as the input source, change the Device from Local and
select the RIO number, or leave this as Any.

Now you should specify the range of voltage to trigger on. You can choose whether to trigger every time the
voltage changes within the specified range ("Changes in range"), or to only trigger when the voltage enters
the specified range ("Enters range"). "Enters range" is generally more useful when you are using analog
inputs to trigger timelines, but "Changes in range" would be required if you were using an analog input as a
variable passed to a Set Intensity action to control the intensity for a group.

- 214 -

Triggers

The voltage range of a Controller's or RIO's analog input can be configured in the Network view. The
smallest measurable voltage change is 0.25V.

DMX Input

LPC and LPC X rev 1 can receive DMX directly. TPC and LPC X rev 2 can only receive DMX-In via Art-Net
and sACN.

Use the Controller setting to specify which controller should receive the DMX.

Now you should specify which DMX channel to look at and the range of values to trigger on. You can
choose whether to trigger every time the value changes within the specified range ("Changes in range"), or
to only trigger when the value enters the specified range ("Enters range"). "Enters range" is generally more
useful when you are using DMX to trigger timelines, but "Changes in range" would be required if you were
using a DMX channel as a variable passed to a Set Intensity action to control the intensity for a group.

DMX Input State

LPC and LPC X rev 1 can receive DMX directly. TPC and LPC X rev 2 can only receive DMX-In via Art-Net
and sACN.

Use the Controller setting to specify which controller should receive the DMX.

The Event state defines when the trigger should be fired.

The Input Lost event will be fired when the controller detects that it is no longer receiving DMX on the
configured input.

The Input Detected event will be fired when the controller detects that it is receiving DMX data after not
receiving it previously.

Audio Input

The RIO A has a stereo balanced line level audio input that can be used as a trigger.

To trigger from aRIO A, select the number of the RIO A, or leave this set toAny to cause the trigger to
attempt to match against audio input from any RIO A. In this case, the RIO number will be captured as a
variable.

Use the Channel setting to specify whether the trigger shouldmatch against the left or right audio channel,
or the combination of the two. Now select which frequency band to use, or leave this set to the overall
volume of the channel. Each RIO A can analyse incoming audio as up to 30 frequency bands - see Remote
Devices.

The Peak checkbox tells the trigger to match on the decaying level of the last peak in the audio frequency
band.

Finally, specify the range of values to trigger on. You can choose whether to trigger every time the value
changes within the specified range ("Changes in range"), or to only trigger when the value enters the
specified range ("Enters range"). "Enters range" is generally more useful when you are using audio to trigger

- 215 -

Pharos Designer User Manual

timelines, but "Changes in range" would be required if you were using an audio band as a variable passed to
a Set Intensity action to control the intensity for a group.

TPC/TPS Temperature

The TPC/TPS has a temperature sensor, which can be used in triggers.

Use the Controller to specify which TPC/TPS should be considered the input source. Select the units as
Celsius or Fahrenheit, then choose how to respond to changes. You can choose whether to trigger every
time the temperature changes within a specified range ("Changes in range"), or to only trigger when the
temperature enters a specified range ("Enters range"). "Enters range" is generally more useful when you are
using temperature changes to trigger timelines, but "Changes in range" would be required if you were using
the temperature reading as a variable passed to a Set Intensity action to control the intensity for a group.

- 216 -

Conditions

Conditions
A Condition is used to specify when a Trigger should run. In an IF Then statement, this is an AND within the IF (IF
AND THEN).

For the trigger to fire, the Conditionmust also bemet.

Example:

IF (Real Time is 10:00:00) AND (Real Time is Before 21/05/2015) THEN (Start
Timeline 1)

The Real Time Trigger will fire whenever the built in Real Time clock tells the controller that it is 10:00:00
AND that the date is before 21/05/2015, and the controller will then Start Timeline 1.

Any of the Conditions can be added to any of the Triggers to narrow downwhen they will be fired.

You can have several triggers of the same type with the same parameters, but different conditions and actions, so
that the same input can have a different Action depending on another factor (e.g. time of day)

There are various different types of Condition:

Clock/Calendar Conditions
Clock and Calendar conditions are used to specify a time/date that the trigger event must occur before or after.

Real Time

Real time conditions can be used to limit the operation of a trigger to certain times. A single condition can be set
to match if the current time is before, after or equal to the time specified. Remember that the advanced dialog
can be used to set amask - this can be particularly useful with the "equal" setting for defining ranges, for
example daily opening times. Where you want to specify a very specific range of times you can use two real
time conditions on the same trigger, one specifying the time it must be after and the other the time it must be
before, and bothmust match.

The conditions work by creating amask of times, where each value of a component (year, month, day, day of
week, hour, minute or second) can either be in themask or not. When a trigger that has this condition on it is
triggered, the current time will have a single value for each component. If the operator is Equals, themask must
contain those values for the condition to be satisfied:

- 217 -

Pharos Designer User Manual

Choosing "Every day" means all years, months and days are in themask, so they will all satisfy the condition.
Similarly, "Any Time" means all hours, minutes and seconds are in themask, so any time will satisfy the
condition. "Once a week" means only one day of the week is in themask, so the condition is only satisfied when
tested on that day of the week. Choosing a particular date or timemeans that only that date or time is set in the
mask, so no other will satisfy the condition.

Using the Advancedmode, you can createmore versatile masks:

For example, for the condition to be satisfied between 10pm and 4am, you would highlight all years, months,
days, days of the week, minutes and seconds in themask, but only set 22, 23, 0, 1, 2 and 3 in the hour mask.
Thus, the condition will only be satisfied when the current hour is between 10pm and 4am.

- 218 -

Conditions

Another examplemight be if you wanted the condition to be satisfied in every tenthminute on Sundays. Here,
you would highlight all years, months, days, hours, and seconds in themask, highlight only Sunday in the Day
Name and highlight 0, 10, 20, 30, 40 and 50 in theminutes.

If the operator is set to Before (or After), the condition is satisfied if the current time is before (or after) the time
set in themask. If themask contains a unique time (a single value for year, month, day, hour, minute and
second), this should be easy to understand.

If the wholemask is set for a component of the date, that component is always satisfied as being Before (or
After) the current time.

If themask contains multiple (but not all) values in a component of themask, only the first set value is taken.
For example, if the day of the week component has Monday and Tuesday set, this is interpreted as being Before
or After Monday.

When the operator is Before or After, the day of week is only considered if every value of the day component is
set (so it will be satisfied on any day of themonth).

NOTE:Conditions are always tested on the Controller that handles the trigger. Real time triggers are always
handled on the Controller designated as Network Primary. But if you use real time conditions in situations where
they will be tested on Controllers that are not the Network Primary then it is up to the user to make sure the time
and date are set correctly on all the Controllers and not just on the Network Primary although they should
synchronize automatically.

Astronomical

The Controllers are also equipped with astronomical clock algorithms which automatically generate the correct
sunrise, sunset, dawn and dusk times for the location of the installation (see project properties).

Astronomical conditions can be used to limit the operation of a trigger to daytime or night time by selecting
between dawn & dusk, sunrise & sunset, sunset & sunrise, etc. You can also specify offsets, negative or
positive, in minutes as required.

There is also the option to select real time instead of sunset, sunrise or twilight and enter a time to create a
hybrid condition such as "Between dusk and 01:00" or to create real time "between" conditioning which spans
midnight.

Two versions of dawn and dusk are offered, using the two definitions of twilight: civil and nautical. Please see
Wikipedia for an explanation of these terms.

Lunar

As well as astronomical triggers the Controller uses lunar clock algorithms to calculate the lunar phases based
on the location of the Controller (see project properties).

Lunar conditions can be used to limit the operation of a trigger to specified lunar phases by selecting between
new moon & full moon, first quarter & third quarter, etc.

Playback Conditions
Playback conditions are used to check whether a playback object (timeline or scene) is currently in use, or more
complicated conditioning based within the Lua scri[ting environment

- 219 -

http://en.wikipedia.org/wiki/Twilight

Pharos Designer User Manual

Timeline Running

Use this condition to determine if a timeline is currently running. Running is defined as being between the start
and the end of the timeline - so a timeline holding at end is not running. This condition can be useful if you want
to only start a timeline if it is not already running. Sometimes timelines are used as timers and this condition is
used to determine if the timer has expired.

Timeline Onstage

Use this condition to determine if a timeline is currently affecting the output of the Controller. It will be true as
long as one fixture patched to this Controller is being controlled by the timeline. It does not matter whether the
timeline is running or holding at end.

Note that, unlike the timeline running condition, its result may vary between different Controllers in a network
system because it depends on whether fixtures in the timeline are locally patched.

Scene Onstage

Use this condition to determine if a scene is currently affecting the output of the Controller. It will be true as long
as one fixture patched to this Controller is being controlled by the Scene.

Script

Use this to run a Lua script where the returned value determines whether the condition is true or not. Press
Launch Editor to open the script editing dialog. If you can not achieve what you want with the conditions
provided it is almost certain that a script can be defined to solve your problem.

The Pharos Controllers support a scripting language that can be used for handling complicated conditional
triggering or other advanced control requirements. The user can write scripts and set them to run in response to
any trigger event. From within a script you can do all the things that you can do with a trigger in the triggers
screen – access passed-in variables, test conditions and perform actions - but you can also definemore
complicated conditional statements and perform mathematical operations.

Example Scripts are available in this help file.

WARNING:Scripts are an advanced feature intended to solve problems that cannot be addressed in any other
way. They are not as user-friendly as the normal triggers interface and incorrectly written scripts will not work as
intended and could cause other problems with the operation of your Controller. For help with writing scripts,
please see the Trigger Script ProgrammingGuide, or please contact support to discuss requirements for a
particular project.

Interactive Conditions
Interactive conditions are used to require that a certain interactive element is in a certain state for the trigger to fire
e.g. a digitial input being high, or a BPS button being pressed.

- 220 -

Conditions

Digital Input

You can specify a condition based on the current state of an LPC's, TPC with EXT's or Remote Device's digital
input. Leave the Device as Local to check an LPC's or TPC with EXT's input, or choose a RIO. Select the input
number and whether it is active high or low (select low for contact closure).

Note that if you havemore than one RIO of the same type with the same address then the condition will check
against themost recent event received.

Digital inputs on Controllers or Remote Devices can also be used to detect contact closures.

Digital Word

This condition allows you to test multiple of the digital inputs as a single condition. By clicking repeatedly on the
numbers representing each input you can specify whether it has to be low, high or either (the default) to match.

As a side-effect the condition will also capture as a variable the state of all inputs set to match as a binary
number. This can be useful if you want to pass a lot of information (such as a timeline number) using a set of
digital inputs. When building the binary number low (or contact closed) is treated as a one and high (or contact
open) is treated as a zero and input 1 is the least significant bit (LSB) and input 8 is themost significant bit
(MSB).

BPS Button

You can specify a condition based on the current state of a button. Select the BPS and button number and
whether it is pressed (Down) or not (Up).

Protocol Conditions
Protocol conditions are generally based around lighting or Pharos protocols, but also include analog inputs. These
could be use to specify that eDMX Pass-Through can only be enabled if there is an eDMX signal to pass-through, or
to only attempt to send DALI commands if the correct power is applied to the DALI Bus.

Status
Protocol Status conditions are specifically based on the current status of a protocol (Pharos or Lighting).

Remote Device Online

Use this condition to determine if a Remote Device is online (or offline with "NOT" checked), select the type
(RIO or BPS) and its number.

eDMX Pass-Through Detected

Use this to test if a valid eDMX source is detected on the specified port. See patch for more information.

- 221 -

Pharos Designer User Manual

Live Video Signal Detected

Use this to test whether a valid Live Video Signal is being received.

Output Enabled

Use this to test whether a specified output protocol is enabled.

DALI Status

DALI Bus Power

Use this condition to determine the electrical state of a specific DALI bus.

DALI Ballast Errors

Use this condition to determine if any or a single ballast(s) have reported a fixture error.

Dynamic
Dynamic Protocol conditions are specifically based on the current level of an input.

Analog Input

The revised LPC hardware and TPC with EXT have 8 inputs that can be configured as digital or analog
inputs in the Interfaces tab of the Network view. The RIO 80 and RIO 44 also have configurable inputs, see
Remote Devices.

You can specify a condition based on the current state of an analog input. Set Device to Local to use a
Controller's input or choose a RIO. Then select the input number and the percentage range of input voltage.
The voltage range of an Controller's or RIO's analog input can be configured in the Network view.

DMX Input

This condition will test whether the last received value for a particular DMX channel is within the specified
range.

DMX Input Detected

This condition will test whether the controller is currently receiving DMX Input.

- 222 -

Actions

Actions
An Action tells the controller what to do when it receives a Trigger. It is the THEN part of an IF THEN statement.

Example:

IF (Real Time is 10:00:00) THEN (Start Timeline 1)

The Real Time Trigger will fire whenever the built in Real Time clock tells the controller that it is 10:00:00, and
the controller will then Start Timeline 1.

There aremany different Actions that can be linked to a Trigger which can affect the output of the controller,
feedback on a Pharos BPS or TPC/TPS or send amessage to another control system, among other things.

Where included, the Controller setting specifies which controller in aMulti-controller setup should run the action

Playback Actions
Playback actions are used to directly or indirectly affect the lighting output of the controller.

Timeline Actions
Timeline Actions are used to control Timelines and their output to fixtures.

Start Timeline

Starts a timeline, use the configuration pane to select which timeline.

Release Timeline

Releases a timeline, use the configuration pane to select which timeline and an optional release time.

Toggle Timeline

Starts a timeline if it's not running, or releases the timeline if it is, use the configuration pane to select which
timeline and an optional release time.

Release All Timelines

Choose which playback objects to release, with an optional release time.

l All - Release all timelines and scenes
l Timelines - Release all active timelines
l Scenes - Release all active scenes

- 223 -

Pharos Designer User Manual

l Off - Ignore groups
l Only Group - Release objects in the chosen group
l Except in Group - Release objects not in the chosen group

Note: If any overrides are in effect, these will only be released with a Release All - All action. To clear
overrides with any of the other options, use the Clear RGB action at the same time.

Pause Timeline

Pauses a timeline at its current position - effects andmedia will also freeze, use the configuration pane to
select which timeline.

Resume Timeline

Resumes playback of a paused timeline from its current position, use the configuration pane to select which
timeline.

Pause All

Pauses all timelines at their current position - effects andmedia will also freeze.

Resume All

Resumes playback of all paused timelines from their current positions.

Set Timeline Rate

The set timeline rate action allows the playback speed of a particular timeline to bemodified on the fly. You
can select which timeline you want to control or get the timeline number from a variable. The rate is
specified as a percentage, where 100% is the programmed rate, 200% would be double speed, and 50%
would be half speed. The rate can also be driven by a variable.

Set Timeline Position

The set timeline position action allows the playback position of a particular timeline to bemodified on the fly,
typically the timeline would be paused to prevent it running on by itself. You can select which timeline you
want to control or get the timeline number from a variable. The position is specified as a percentage, where
0% is the start and 100% the end. The position can also be driven by a variable.

Scene Actions
Scene Actions are used to control the output of Scenes.

- 224 -

Actions

Start Scene

Starts a scene, use the configuration pane to select which scene.

Release Scene

Releases a scene, use the configuration pane to select which scene and an optional release time.

Toggle Scene

Starts a scene if it's not running, or releases the scene if it is, use the configuration pane to select which
scene and an optional release time.

Other Playback Actions
These Playback actions, can be used to affect the playback in other ways

Enqueue Trigger

Use this to fire one Trigger from within another Trigger. The second trigger will be fired once the actions in
the first trigger have run. You can specify which trigger you want to fire or which variable you want to use to
get the trigger number from. You can also choose whether you want test the conditions of that trigger or not.

Run Script

Use this to run a Lua script, press Launch Editor to open the script editing dialog. If you can not achieve
what you want with the triggers and actions provided it is almost certain that a script can be defined to solve
your problem.

Pharos Controllers support a scripting language that can be used for handling complicated conditional
triggering or other advanced control requirements. The user can write scripts and set them to run in
response to any trigger event. From within a script you can do all the things that you can do with a trigger in
the triggers screen – access passed-in variables, test conditions and perform actions - but you can also
definemore complicated conditional statements and perform mathematical operations.

Example Scripts are available in this help file.

WARNING:Scripts are an advanced feature intended to solve problems that cannot be addressed in any
other way. They are not as user-friendly as the normal triggers interface and incorrectly written scripts will
not work as intended and could cause other problems with the operation of your Controller. For help with
writing scripts, please see the Trigger Script ProgrammingGuide, or please contact support to discuss
requirements for a particular project.

Master Intensity

Sets the intensity of a group of fixtures, use the configuration pane to select the controller, group, intensity
level, fade and delay times. Because the LPCs are genuine lighting controllers as opposed to DMX

- 225 -

Pharos Designer User Manual

framestore devices, realtime control of intensity is available at all times as it would be on a sophisticated
lighting console. You can control the intensity of one or more groups of fixtures regardless of what timeline
(s) they may be running.

If you select a VLC/ VLC+ the intensity of the whole of the selected Content Target in the specified
composition will bemastered instead of a fixture group.

You can think of each group as having its own intensity fader, which this action allows you tomove
between 100% (default) and 0%. You can specify which group to affect and the new position for the fader. It
is sometimes useful to set the fader position (as a percentage) from a variable - this permits direct intensity
mastering via an input such as serial, MIDI or DMX. The fade and delay times can also be set from
variables.

The fader modifies the programmed intensity for all fixtures within the group. On startup all groups have their
faders at 100%. Wheremultiple groups containing the same fixtures have their intensity reduced then the
decrease is cumulative.

Note that if you decrease intensity for one group you can only increase it again by acting on the same group.
Applying an increase intensity action to a different group will have no effect even if that group contains the
same fixtures - you would be trying tomove a different fader.

Increase & Decrease Intensity

Increases or decreases the intensity of a group of fixtures, use the configuration pane to select the, group,
step size (in percent), fade and delay times. Because the LPCs are genuine lighting controllers as opposed
to DMX framestore devices, realtime control of intensity is available at all times as it would be on a
sophisticated lighting console. You can control the intensity of one or more groups of fixtures regardless of
what timeline(s) they may be running.

If you select a VLC/ VLC+ the intensity of the whole of the selected Content Target in the specified
composition will bemastered instead of a fixture group.

You can think of each group as having its own intensity fader, which these actions allow you tomove
between 100% (default) and 0%. You can specify which group to affect and the increment by which to
change the fader position. It is sometimes useful to set the step size, fade and delay times from variables.

The fader modifies the programmed intensity for all fixtures within the group. On startup all groups have their
faders at 100%. Wheremultiple groups containing the same fixtures have their intensity reduced then the
decrease is cumulative.

Note that if you decrease intensity for one group you can only increase it again by acting on the same group.
Applying an increase intensity action to a different group will have no effect even if that group contains the
same fixtures - you would be trying tomove a different fader.

Set RGB

Use this to set a fixture or group's Intensity, Red, Green, Blue and Colour Temperature levels selectively
either to a fixed value or to track a variable. The latter makes for some very interesting realtime effects
when used in conjunction with 2D andMedia presets. Set a fade time to introduce the change. You can also
choose a fade path for the change.

- 226 -

Actions

To choose which levels are controlled, use the checkboxes for each parameter, e.g. if you only select
Intensity, then only the Intensity level will be set. This allows you to have a single slider for each colour on
the TPC (for example).

If you select a VLC/ VLC+ the intensity will bemastered for the whole of the selected content target.

Clear RGB

Use this to clear one or all fixture IRGB overrides (see above), set a fade time to release the change(s).

If you select a VLC/ VLC+ the intensity will bemastered for the whole of the selected content target.

Set Text Slot

The Set Text Slot trigger action allows you to change the value of a text slot from a trigger, see the Text
Preset.

You select the slot either by picking from the Text Slot list or by specifying a variable. If you use a variable,
the variable must have captured a string in the trigger, and that stringmust be the name of an existing text
slot.

The value to put in the text slot is then selected with the second variable.

Set Timecode

Use this to set the timecode position for one of the six Time Sources (set the appropriate timecode format).

Set Volume

Use this Action to set the output volume of the controller (used for Timeline Audio Output)

Transition Target

Use this action to change the position or rotation of a Target (Primary, Secondary or Additional Content
Targets or Adjustment Targets).

Select the Controller, Target Type, Composition/Adjustment, Content Target Type (Primary, Secondary,
Target 3-8) and Property (Rotation, X Position or Y Position) and set the relevant values.

Count specifies how many times tomake the change , Period determines how long the change should take
and Delay determines the pause beforemaking the change.

Set Content Target Blur

Use this action to set a blur on one or more content targets within the project.

Use the blur radius to affect the level of blurring applied to the target, all content output to the target will then
be blurred with this setting.

- 227 -

Pharos Designer User Manual

You can cause the blur to fade in using the fade and delay settings.

Interactive Actions
These Interactive actions are used to cause feedback to be displayed on an Interface, such as the TPC/TPS or the
BPS

Hardware Reset

Use this to force the Controller(s) to perform a hard reset which is equivalent to a power cycle. Note that unlike
PC based solutions there is no particular advantage or maintenance requirement to periodically reset a
Controller, this action is offered purely as amethod of resetting the system to a defined, start-up state.

Set BPS Button LED

The BPS has eight buttons each with an integral white LED.

Use the configuration pane to select the BPS, button number (which can be driven by a variable) and the desired
LED behaviour. Enabling "Set all other LEDs to default" will set the other LEDs to their default values as
specified in BPS properties.

TPC/TPS Actions
TPC/TPS Actions are actions that are specific to a Pharos TPC/TPS.

Set Touch Control Value

Use this action to show feedback on TPC/ TPS controls by changing their current value(s). Currently the
Slider and Colour Picker controls support this.

Set the Controller number to a particular TPC/ TPS in order to populate the Control drop down list from the
Interface. Set the Control field to the target control key, or use the variable injection syntax tomake this
action work for several controls with similar control keys - the syntax is the same as for the Serial and
Ethernet Output action.

Set the Index field to the index of the value that should be changed. For a Slider, this should always be 1,
but for a Colour Picker it could be 1, 2 or 3 to set red, green or blue. The index can alternatively be set from a
variable. Finally choose the value to set, or elect to set this from a variable.

Set Touch Control State

Use this action to show feedback on TPC/TPS controls by changing their appearance. The theme applied
to an Interface contains various 'states' for each control type. This action lets you change the active state
for a control.

Set the Controller number to a particular TPC/TPS in order to populate the Control and State drop down lists
from the Interface. Set the Control field to the target control key, or use the variable injection syntax tomake
this action work for several controls with similar control keys - the syntax is the same as for the Serial and
Ethernet Output action. It is also possible to use the wildcard character to changemultiple controls at once.

- 228 -

Actions

For example, using "button*" would set all controls with a key that begins with "button" to the specified
state.

Select the state from the drop down list or choose to set the Control to its default state.

Set Touch Control Caption

Use this action to change the caption of TPC/TPS controls, including Labels.

Set the Controller number to a particular TPC/TPS in order to populate the Control drop down list from the
Interface. Set the Control field to the target control key, or use the variable injection syntax tomake this
action work for several controls with similar control keys - the syntax is the same as for the Serial and
Ethernet Output action.

Finally enter the text to set as the new caption. Variables can be used in this text, using the same syntax as
for the Serial and Ethernet Output action.

Set Touch Page

Use this action to chage the current page shown on a TPC/TPS .

Set the Controller number to a particular TPC/TPS in order to populate the Page drop down list from the
Interface. Set the Page field to the name of the target page, or use the variable injection syntax tomake this
action work for several pages with similar names - the syntax is the same as for the Serial and Ethernet
Output action.

Disable Touch Device

The entire user interface of a TPC/TPS can be enabled or disabled. Set the Controller number to the target
TPC/TPS , then choose whether to enable or disable the user interface.

Lock Touch Device

If security has been setup in the Interface then this action can be used to show the lock screen on the target
TPC/TPS. The user must enter the correct code on the keypad in order to unlock the TPC/TPS.

Set the Controller number to the target TPC/TPS , then choose whether to lock or unlock the user interface.

Set Screen Brightness

The brightness of the backlight of a TPC/TPS may be set using this action. Set the Controller number to the
target TPC/TPS, then set the value as a percentage, or elect to set this from a variable.

NOTE: the brightness of the TPC/TPS screen can be set automatically in response to changes in ambient
light - see Controller Properties.

Protocol Actions

- 229 -

Pharos Designer User Manual

Protocol Actions are used to communicate with other control systems or third party devices or to affect third party
signals going into the controller.

Output Serial

RS232 remains a very popular protocol for interfacing equipment and the RS232 port of a Controller or Remote
Device can be configured to support most common data formats. RS485 is amore robust alternative to RS232
(better noise immunity, longer cable lengths and faster data rates) and is a widely supported protocol. A
Controller or Remote Device can be configured to send RS232 full-duplex or RS485 half-duplex in the Network
view, see Controller interfaces and Remote Devices. A TPC with EXT can send RS232 full-duplex.

To send serial from aController's serial port, use the Controller setting to specify the Controller number, leave
the Device as Local and choose a port number. For the revised LPC hardware and TPC with EXT this should be
set to 1. For the LPC X this should be set to 1 or 2, depending which RS232 port is being used.

Alternatively, set the Device to a RIO and select the RIO number.

Now define the string of output characters. There are three formats in which serial strings can be entered:

Hex A series of hexadecimal characters (0-9, a-f, A-F) where pairs of values are interpreted as a
byte.

Decimal A series of decimal characters (0-255) separated by "." characters.
ASCII A series of ASCII characters. The special characters '\n' for new line, '\r' for carriage return,

and '\t' for tab are supported.

Output Ethernet

Use the Controller setting to specify which Controller should generate the Ethernet output. Define the recipient's
IP address and Port, select themessaging protocol (UDP, TCP) and define the string of output characters to be
transmitted. The recipients IP address and port number can be passed with variables.

When sending UDP messages it is possible to specify a bus to send from. This will force the UDP packet to be
sent from the port number specified in that bus.

When sending TCP messages it is possible to specify a bus to send from. If the selected bus is of type TCP
Client, the connection to the third-party device will be created before themessage is sent. If the bus is of type
TCP, themessage will be sent using an existing connection to the third-party device, if one is available,
otherwise the data will be sent from a different port to that which is specified in the bus settings.

Output MIDI

MIDI is another very popular protocol for interfacing equipment and theMIDI input trigger allows you to define,
via a convenient MIDI Message Builder, the type (Short message, MIDI Show Control or Extended) and
command string that is to be output.

Use the Controller setting to specify which LPC's MIDI port should be used as the output. To use theMIDI port
on a RIO A, set the Device to RIO A and specify the RIO A number.

Press Edit to open theMessage Builder:

- 230 -

Actions

Press Add, select one of the threemessage types and then the specific command and variables.

Press Delete to delete a command string.

The resulting hexadecimal string will be constructed automatically and displayed in the window for reference
with questionmarks ("??") indicating undefined characters in MIDI Show Control (since we do not know in
advance how many characters will be captured) or <c>, <d> and <x> as appropriate for Short and Extended
messages.

Press Ok to finish.

A comprehensive guide toMIDI is beyond the scope of this document, see theMIDI Manufacturers Association
for more details, and themanual for the equipment to be interfaced will also certainly be an invaluable reference.

Output Digital

The RIO 08 has eight relay outputs, the RIO 44 has four and the RIO 80 none.

Use the configuration pane to select the RIO, output and the state of the relay.

It is also possible to Toggle the output (turning it on if it is off and off when it is on)

Toggle Audio

Use this to stop a RIO A from processing audio. This can aid troubleshooting as audio activity tends to fill the
log. Select RIO A and specify the RIO A number.

Toggle eDMX Pass-Through

Use this to enable or disable eDMX Pass-Through on an LPC's DMX ports. Choose which port you want to
enable or disable by choosing from the port selection box. See patch for more information.

Disable Output

Use this to stop output of a selected protocol from the controller. This will prevent the controller from outputting
the selected protocol, allowing another devices to take over control of the lighting, or disabling an output for test
purposes.

DALI Actions

Set DALI Output

Use this to set the output on DALI fixtures patched to a specified Interface. You can specify whether you
want all of the fixtures on that Interface, fixtures in a certain group or a single fixture to be affected by the
change. You can also specify a fade time or choose to reuse the last fade time stored on the ballasts.

This action allows the following to be set:

l Level - The intensity of the fixture
l XY - The intensity and R,G,B values

- 231 -

http://www.midi.org/about-midi/abtmidi.shtml#protocol

Pharos Designer User Manual

l TC - The intensity and colour temperature
l RGBWA - The intensity and direct colour values

Recall DALI Scene

Use this to recall a DALI scene on DALI fixtures patched to a specified Interface. You can specify whether
you want all of the fixtures on that Interface, fixtures in a certain group or a single fixture to be affected by
the scene change. You can also specify a fade time or choose to reuse the last fade time stored on the
ballasts.

Send DALI Command

Use this to send a DALI command to DALI fixtures patched to a specified Interface. You can specify
whether you want all of the fixtures on that Interface, fixtures in a certain group or a single fixture to be
affected by the command. DALI commands include off, fade up/down, step up/down, step tomin/max, step
down and off and step up and on. Where fading is involved, you can specify a fade rate or choose to reuse
the last fade rate stored on the ballasts.

When the Tridonic custom DALI commands Project feature is enabled, Light Sensor andMotion Sensor
commands can be output to emulate these devices.

Note: Light Sensor andOccupency sensor commands require the Tridonic custom DALI commands
Project feature to be enabled

Start DALI Emergency Test

Use this to start a Duration or Function test on all or a single DALI address(es) on the specified interface.

Stop DALI Emergency Test

Use this to stop a Duration or Function test on all or a single DALI address(es) on the specified interface.

Mark DALI Ballast Fixed

Use this to mark all or a single emergency ballast as fixed on the specified interface.

- 232 -

Variables

Variables
Variables are a way of collecting numbers from inputs and using them in actions. Some examples would be:

l Receiving aMIDI note onmessage and using the note value as a timeline number to start.
l Using a DMX input channel to master the intensity of a group of fixtures.
l Receiving a serial command on one Controller and outputting a related serial command on another.

Unless they have been enabled through the Project Features page, the variables will not be displayed. You can
enable them using the Advanced Feature button.

Triggers That Capture Variables

Timeline Started, Timeline Ended And Timeline Released

The Timeline Started, Timeline Ended and Timeline Released triggers capture the timeline number as variable 1 if
the Timeline parameter is set toAny.

Scene Started And Scene Released

The Scene Started and Scene Released triggers capture the timeline number as variable 1 if the Scene parameter is
set toAny.

Timeline Flag

If the Timeline has been set to Any, the timeline and flag that fired the triggers are captured into variables 1 and 2.

Digital Input

The Digital Input trigger will capture the input number if the Input parameter of the trigger is set toAny.

If triggering from aRIO's digital input, the trigger will capture the input number if the Input parameter of the trigger is
set toAny. The RIO number will be captured as variable 1 and the input number as variable 2 if both these
parameters are set toAny. If only one of these parameters is set toAny then the captured number will be stored as
variable 1.

Analog Input

Captures the analog input as a percentage in variable 1. For example, if the input range of the Controller’s analog
input is set to 0-10V and the input is 4V then variable 1 will be 40%.

If triggering from aRIO's analog input, the analog input value is captured as a percentage in variable 1, then the RIO
number (if set toAny) and the input number (if set toAny) in subsequent variables. If the RIO number and the input
number are set toAny then variable 2 will be the RIO number and variable 3 will be the input number. If the RIO
number is specified then variable 2 will be the input number.

- 233 -

Pharos Designer User Manual

Serial And Ethernet Input

Serial and Ethernet trigger data is entered as a string of data bytes, represented in either ASCII, hex or decimal form.
Any single byte or group of consecutive bytes can bematched by specifying a wildcard, and the value stored as a
variable. Multiple wildcards can be used and each will store into the next available variable. There are three types of
wildcards supported:

<c> or <C>
Will match any single character (or byte) and store its raw value (0-255) as the next variable. You
can add a length to the wildcard tomatchmultiple characters and treat them as a single number -
so <4c> wouldmatch a 32 bit number. Maximum length = 4.

<d> or <D>

Will match a decimal character (ASCII, 0-9) and store its numeric value (0-9) as the next variable.
You can add a length to the wildcard tomatchmultiple decimal characters and treat them as a
single number - so <4d> wouldmatch four decimal characters and treat them as a number from 0-
9999. Maximum length = 10.

Optionally, an upper limit can be applied (<3d:255>) to set themaximum value for the incoming
number. This way any range can be converted to a percentage for use with actions, e.g. Set
RGB.

<x> or <X>

Will match a hexadecimal character (ASCII, 0-f) and store its numeric value (0-15) as the next
variable. You can add a length to the wildcard tomatchmultiple hexadecimal characters and treat
them as a single number - so <2x> wouldmatch two hexadecimal characters and treat them as a
number from 0-255. Maximum length = 8.

<s> or <S>

Will capture a string of arbitrary length. To determine where the string ends, youmust either:

l Specify a terminator yourself. For example, the trigger <s>\n would capture everything up
to (but not including) the first \n character received. A terminator cannot be another vari-
able, it must be a literal character, so <s><d> is not a valid trigger.

l Send a NULL character (0x00) to the Controller to indicate the end of the string. This NULL
character is assumed and is not shown in the Designer interface.

You can also say that you want to capture a string with a predetermined number of characters.
For example, <4s> will capture 4 bytes and store it as a string. There is no need for a terminator in
this case.

Note that if the input data does not match the wildcard type then the trigger does not match. So if you have specified
the wildcard <3d> and the input is ASCII "12y" then the trigger will not match because the 3 characters were not all
of the required decimal type.

When using Ethernet Inputs the last two variables in the trigger will be the IP address and the source port number of
the device themessage was received from.

If triggering from aRIO's serial input, the RIO number will be captured as the first variable if set toAny.

DMX Input

When aDMX Input trigger matches it will implicitly store the channel value as variable 1.

- 234 -

Variables

MIDI Input

In short MIDI messages, you can capture data 1 and/or data 2 into a variable by checking the 'Capture' checkbox. If
both are checked, data 1 is variable 1 and data 2 is variable 2. For some short messages, i.e. PitchWheel, the two
data bits are treated as a single 14 bit value. To capture this 14 bit value, check 'Capture' for data 1 and check the '14
bit variable' checkbox.

In MSC messages, if the 'Cue number' and 'List number' are left blank, the received values will be captured in
variables. Cue number is captured into variable 1 and list number into variable 2.

Extendedmessages support the samewildcard format as serial triggers. The only difference is that <2c> captures a
16-bit value in serial triggers and it captures a 14-bit value in MIDI triggers.

If triggering from aRIO A's MIDI input, the RIO A number will be captured as the first variable if set toAny.

Audio Input

When an Audio input trigger matches it will implicitly store the level for the band as variable 1.

If triggering from aRIO A, the RIO A number will be captured if set toAny.

DALI Input

If the trigger is using aMin toMax range then thematching number will be stored as variable 1.

DALI Ballast Error

If All is selected instead of a specific address then the address of the ballast reporting the error will be stored as
variable 1.

BPS Button

If the button number is set toAny, the trigger captures the pressed button as variable 1.

Alternatively, if the BPS station number is set toAny, then the station number is captured as variable 1 and the
button number as variable 2.

Touch Button Event

You can use one trigger to respond tomultiple buttons by using variables - the syntax is the same as for Serial and
Ethernet Input triggers, e.g. button<3d> will match a button with the control key button001 or button002, etc. and
capture the number as a variable. The name of the page that the button is on will also be captured as the final
variable.

- 235 -

Pharos Designer User Manual

Touch Slider Move

You can use one trigger to respond tomultiple sliders by using variables - the syntax is the same as for Serial and
Ethernet Input triggers, e.g. slider<3d> will match a slider with the control key slider001 or slider002, etc. and
capture the number as a variable.

The value of the slider will be captured as a variable.

The order of captured variables will be:

1. Any captures from Key (with additional variables where required)
2. Slider Position (0-255)
3. Name of the interface page containing the slider

Touch Colour Change

You can use one trigger to respond tomultiple colour pickers by using variables - the syntax is the same as for Serial
and Ethernet Input triggers, e.g. colour<3d> will match a colour picker with the control key colour001 or colour002,
etc. and capture the number as a variable.

The RGB values will always be captured as 3 variables.

The order of captured variables will be:

1. Any captures from Key (with additional variables where required)
2. Red level (0-255)
3. Green level (0-255)
4. Blue level (0-255)
5. Name of the interface page containing the colour picker

Touch Page Change

You can use one trigger to respond tomultiple pages by using variables - the syntax is the same as for Serial and
Ethernet Input triggers.

Touch Keypad Code

You can use one trigger to respond tomultiple keypads by using variables - the syntax is the same as for Serial and
Ethernet Input triggers, e.g. keypad<3d> will match a keypad with the control key keypad001 or keypad002, etc. and
capture the number as a variable.

The code entered into the keypad will be captured as a variable.

The order of the captured variables will be:

1. Any captures from Key (with additional variables where required)
2. The entered code (as a string)
3. Name of the interface page containing the keypad

- 236 -

Variables

Conditions That Capture Variables

Digital Word

This condition will capture a variable from the inputs set to match either value. This variable will be added on the end
of any variables captured by the trigger.

Conditions That Use Variables

Run Script

Variables can be accessed from Lua scripts.

DALI Ballast Errors

The DALI ballast address on a specific interface can be passed in by variable. Select the relevant "Variable" option
and then choose the variable index.

Actions That Use Variables
Captured variables can then be used in actions by specifying the variable index (corresponding to the order in which
the variables were captured). If you havemultiple actions associated with a trigger then each action can use the
variables independently.

Start, Release, Toggle, Pause And Resume Timeline

Rather than selecting a timeline as a property of the action you can specify the timeline number in a variable. This is
a very powerful feature when you want an external system to be able to call up any one of a large number of timelines
because you do not need to define separate triggers for each timeline.

Start, Release And Toggle Scene

Rather than selecting a Scene as a property of the action you can specify the Scene number in a variable. This is a
very powerful feature when you want an external system to be able to call up any one of a large number of Scenes
because you do not need to define separate triggers for each Scene.

Set Timeline Rate

You can select the timeline tomodify with a variable (as for Start Timeline). You can also choose to pass in the rate
percentage using a variable.

Set Timeline Position

You can select the timeline tomodify with a variable (as for Start Timeline). You can also choose to pass in the
position percentage using a variable.

- 237 -

Pharos Designer User Manual

Enqueue Trigger

You can select the trigger to Enqueue with a variable.

Run Script

Variables can be accessed from Lua scripts.

Master, Increase And Decrease Intensity

The intensity level or increment can be passed in by a variable. Select the "Variable" option and then choose the
variable index.

Set RGB

The target for the Set RGB can be set from a variable. First select the override type (Fixture or Group) and then set
the selector to Variable and then choose the variable index.

The Red, Green and Blue values for colour can be passed in as variables. Select the "Variable" option for the colour
you want to adjust and then choose the variable index. The fade time for the action can also be passed in as a
variable. Select the "Variable" option and then choose the variable index.

Clear RGB

The target for the Set RGB can be set from a variable. First select the override type (Fixture or Group) and then set
the selector to Variable and then choose the variable index.

The Red, Green and Blue values for a group of fixtures can be passed in as variables. Select the "Variable" option for
the colour you want to adjust and then choose the variable index. The fade time for the action can also be passed in
as a variable. Select the "Variable" option and then choose the variable index.

Set Text Slot

The slot that is to be set an be selected using a Variable. Set the selector to Variable and then choose the variable
index. This variable should be a string that matches the identifier of the text slot.

The text to set the Text sot to can also be set from a Variable. Set the selector to Variable and then choose the
variable index.

Set Volume

The level can be set from a variable.

- 238 -

Variables

Serial and Ethernet Output

In the sameway that you can use wildcards tomatch data in a serial or Ethernet trigger, you can insert the value of
captured variables into your serial output messages. The samewildcard types are supported to define how to output
a variable:

<c> Will output the value of a variable as a raw byte (0-255).

<d> Will output the value of a variable as a decimal number (ASCII, 0-9).

<x> Will output the value of a variable as a hexadecimal number (ASCII, 0-f). Any letters will be lower-
case.

<X> Will output the value of a variable as a hexadecimal number (ASCII, 0-f). Any letters will be upper-
case.

<s> Will output a captured string. <s> will output the entire captured string. <4s> would output the first
4 characters of the captured string.

As with input you can specify a length if you want to output the variable as a longer decimal or hexadecimal number.
So a variable value of 175 output with <4d> would add ASCII "0175" to the serial output. Note that it is padded with
leading zeros to fill the specified length. If the value was too large to express in the specified length it would be
truncated from the left, so <2d> would output the number 123 as ASCII "23".

Output strings are allowed to begin with a wildcard. By default each wildcard takes the next variable in the order they
were captured. If you want to output the variables in a different order then you can add a variable index to the
wildcard in the form <3,2d> where 3 is the variable index. If you specify an output wildcard where there is no
corresponding capture variable then it will have value of zero and output accordingly.

Output Digital

The Device number (not type), Output number and State can all be set from a variable.

TheOutput number will be in the range 1-4 or 1-8 depending on the number of outputs on the RIO.

The State will be an integer where 0 is off and any other integer is on.

MIDI Output

Short messages can output a captured value for data 1 and data 2. Pick a variable using the 'Variable Index'
controls. If data 1 is outputting a captured value, you can optionally send it as a 14-bit value, with the lower 7 bits in
data 1 and the upper 7 bits in data 2, by checking '14 bit variable'.

Outputting aMSC message allows you to set the cue number and/or list number by choosing a variable with the
'Variable Index' controls.

Extendedmessages allow you to output captured variables using the same syntax as serial actions.

- 239 -

Pharos Designer User Manual

DALI Set Level

The DALI group or ballast number on a specific interface can be passed in by variable. Select the relevant "Variable"
option and then choose the variable index.

The level of a DALI ballast, group or all DALI ballasts can be passed in by a variable. Select the "Variable" option and
then choose the variable index.

DALI Recall Scene

The DALI group or ballast number on a specific interface can be passed in by variable. Select the relevant "Variable"
option and then choose the variable index.

Recall a DALI scene on a specific interfaces single ballast, group or all of the ballasts. Select the "Variable" option
and then choose the variable index.

DALI Command

The DALI group or ballast number on a specific interface can be passed in by variable. Select the relevant "Variable"
option and then choose the variable index.

Start DALI Emergency Test

The DALI ballast address on a specific interface can be passed in by variable. Select the relevant "Variable" option
and then choose the variable index.

Stop DALI Emergency Test

The DALI ballast address on a specific interface can be passed in by variable. Select the relevant "Variable" option
and then choose the variable index.

Mark DALI Ballast Fixed

The DALI ballast address on a specific interface can be passed in by variable. Select the relevant "Variable" option
and then choose the variable index.

Set BPS Button LED

The button number and intensity level can be passed in by variables.

Set Touch Control Value

You can use the variable injection syntax tomake this action work for several controls with similar control keys - the
syntax is the same as for the Serial and Ethernet Output action.

You can also use the * wildcard tomatch any string e.g. button* wouldmatch any key starting with button.

- 240 -

Variables

Variables can also be used to set the index of the action and the value to set the control to.

Set Touch Control Caption

You can use the variable injection syntax tomake this action work for several controls with similar control keys - the
syntax is the same as for the Serial and Ethernet Output action.

You can also use the * wildcard tomatch any string e.g. button* wouldmatch any key starting with button.

Variables can also be used in to pass the Text. The variable should contain a sting.

Set Touch Control Page

The page number to change the TPC to can be passed using a variable. This should be a number.

Set Screen Brightness

The level of the Screen brightness can be set using a variable. This variable should be a percentage value.

Transition Content Target

The Composition number, Property parameters, fade and delay can be set using a variable.

Set Content Target Blur

The Composition number, Blur radius, fade and delay can be set using a variable.

Notes
l For hex strings, if a wildcard is inserted after an odd number of digits, the odd digit is treated as the lower 4
bits of the byte. For example, ff1<d> will be interpreted as ff01<d>.

l If you want to match a '<' character, youmust precede it with a backslash. In general, a backslash followed
by any character will match that character (ignoring the backslash).

- 241 -

Pharos Designer User Manual

IO Modules
An IO Module is an add-on for Pharos Designer, which can be used to add to the functionality of the triggering in the
project.

The IO Module is a collection of zero or more Triggers, Conditions and Actions. These Triggers, Conditions and
Actions can be used in the sameway as the default, built in Triggers, Conditions and Actions.

Adding IO Modules to the project

Designer has a series of IO Module as part of the installation.

These are automatically brought into the project, but aren't added to the project. They are listed in the IO Module
Library as UnusedModules.

To "Use" A Module
l Select the requiredmodule
l Choose New under Instance Properties
l Set an instance name and any properties that themodule requires

To Import an IO Module

Open the IO Module window within the Trigger mode.

Select Import and browse for the .iom IO Module file.

The IO Module will be imported and added to the project.

To Download an IO Module

In addition to the IO Modules packaged with Designer, there is anOnline Library of IO Modules that can be
downloaded and included in your project.

Choosing the Download option in the IO Module window within the Trigger Mode will open the online library.

Selecting any modules here will download them and import them into your project for use.

To Create an IO Module

Open the IO Module window within the Trigger mode.

Select Create to create a new IO Module from the source files.

Select the package.json file and the IO Module will be created.

Writing an IO Module requires a good understanding of Lua Scripting, and the IO Module API. This API can be found
here.

IO Module Instances
Each IO Module will have at least one instance.

- 242 -

http://pharos-io-module-developer-guide.readthedocs.io/en/latest/

IOModules

Where configured in themodule, multiple instances can be used to set up communications with multiple separate
devices.

Triggers, Conditions and Actions added by themodule will have a property to select the instance that should be used
(utilising the instance properties).

- 243 -

Pharos Designer User Manual

Examples
Below are some examples of effects which can be achieved through Triggering

Timeline Looping

Through triggering, it is possible to cause a set of timelines to loop continuously.

Trigger 1 At Startup Timeline 1 is started
Trigger 2 When Timeline 1 ends, start Timeline 2
Trigger 3 When Timeline 2 ends, Timeline 3 starts
Trigger 4 When Timeline 3 ends, Timeline 1 starts

This will continue and the 3 Timelines will play one after the other forever.

Lock Out Programming

Sometimes amanual override is required, e.g. using a key switch or other input. This can then also prevent the
normal triggering from running.

Trigger 1 A startup trigger to start a timeline

- 244 -

Examples

Trigger 2-4 Realtime scheduling for starting timelines, with the condition that Timeline Control is not running
Trigger 5 Manual override, starts the override timeline and the Control Timeline
Trigger 6 Manual override release, releases the override timeline and Control Timeline.
Trigger 7 Sunset trigger to release all timelines

When you start the override, you also start a control timeline (this is a timeline with a flag and a loop). The normal
scheduling triggers use a timeline running condition so they can only run if the Control timeline is not running. The
trigger to release the override also releases the control timeline so the normal programming can resume.

TPC/TPS Colour Picking And Sliders

The controls on a TPC/TPS can be used to override the RGB values of colour mixing fixtures. These overrides will
set the levels for the fixture/group set in the action and will override other effects (depending on the Playback
Override Priority)

- 245 -

Pharos Designer User Manual

Trigger
1

At Startup:

l Set the fixtures to full intensity (255) and white (25,255,255)
l Set the Slider positions to the top (full)

Trigger
2

When slider001 (Red) is moved:

l Set the Red property of the RGB override of Fixture 1 to the same value as the slider (variable 1)
l Set Index 1 of the colour picker (Red) to the same value as the slider (variable 1)

Trigger
3

When slider002 (Green) is moved:

l Set the Green property of the RGB override of Fixture 1 to the same value as the slider (variable 1)
l Set Index 2 of the colour picker (Green) to the same value as the slider (variable 1)

Trigger
4

When slider003 (Blue) is moved:

l Set the Blue property of the RGB override of Fixture 1 to the same value as the slider (variable 1)
l Set Index 3 of the colour picker (Blue) to the same value as the slider (variable 1)

Trigger
5

Whenever the Colour Picker is moved:

l Set the RGB override of Fixture 1 to Red = variable 1, Green = variable 2 and Blue = variable 3 (these
are the RGB values coming from the colour picker)

l Set Index 1 of the three sliders to the value of the relevant component of the Colour Picker (Red =
variable 1, Green = variable 2 and Blue = variable 3)

Setting Intensity From Variable Input

Youmay want to set the intensity of a fixture or group from a dynamic input such as Analog input or Touch Slider
move. Below are a series of triggers exhibiting the required structure.

- 246 -

Examples

All these triggers take in a Dynamic input (variable level/volume) and this level will be captured as a variable. This
can be passed to the Set RGB action. The Set RGB action has the option to set the Intensity of the fixture/group.
This will override other programming, if you want to master the intensity of the group without changing the output
colours/effects, you can use theMaster Intensity action.

- 247 -

Pharos Designer User Manual

Simulate
Keyboard Shortcuts

Space Start/Pause Simulation
Esc Stop Simulation
Ctrl+0 Reset the zoom
Ctrl+F Zoom to fit the window
Ctrl++ Zoom in
Ctrl+- Zoom out
Ctrl+ mouse wheel Zoom in and out
Middle-click + drag Zoom into the drawn rectangle
Alt+ mouse wheel (Shift+ mouse wheel)Scroll Horizontally

The simulator allows you to preview your programming on the Layout:

The window comprises 3 sections: Themain portion of the window is your Layout. Top right are the simulator
controls with time counter, and below them any programmed triggers. Note that the time counter shows simulated
time not real time.

Note: The simulator cannot be used with VLC layouts.

Simulator Modes

Timeline Mode

Use this mode to simulate a single timeline, typically the one you are editing. Select the timeline and press Start to
simulate, press Reset to reset the timeline.

- 248 -

Simulate

Project Mode

Use this mode to simulate the whole project and verify your trigger programming and timeline interaction. Any
triggers created will appear on the right hand side and can be activated by clicking on them. Activating a trigger will
automatically start the simulator clock, press Reset to reset all timelines and triggers.

Simulator Controls
The Simulator Play controls are replicated on the Timeline Toolbar, and either can be used to control the simulated
timeline.

Start/ Pause

Toggles between Start and Pause accordingly, the keyboard spacebar can also be used.

Skip Backwards & Forwards

When the simulator is running or paused these buttons skip backwards or forwards in 10 second increments.

Reset

Resets the simulator, the simulated triggers (Project mode only) and releases playback so, if Output Live is enabled,
the venue will go to black (fixture defaults).

Rate Slider

Adjusts the simulator's playback speed (not the timeline's programming) from 0x (paused) > 1x (normal, default
position) > 60x (fastest).

Note:Reset does not reset this setting so remember to set it back to 1x (normal) when you've finished.

Timeline Mode Play Head (Timeline Mode Only)

In TimelineMode, when simulating a timeline in Timelinemode, the simulator's current playback position is marked
by the play head; a black vertical line and arrow on the timeline ruler:

You can grab the play head for manual positioning by clicking on and dragging the arrow along the ruler, akin to
"scratching" since you are now driving the simulator by hand at whatever speed and in whatever direction you
choose, very useful for examining transitions in detail for example - easiest with the simulator paused.

- 249 -

Pharos Designer User Manual

You can alsomake the simulator jump (when running or paused) by just clicking on the ruler at the required target
time, very useful for getting and keeping the simulator in an area of interest, particularly with long timelines.

Testing Trigger Variables
Any triggers which capture variables have a widget that allows values to be tested. These variables take the form of
a comma-separated list and can either be numbers or text strings. Text strings should be bounded with double
quotes.

For example, entering: 100, 50, "ABC", "100" would inject variable indices 1>4 with the values 100 (number), 50
(number), ABC (text) and 100 (text).

Testing Trigger Conditions
Conditions are not tested by the simulator.

Simulating Timecode
By default, for any timeline that has been set to use a timecode source (see timeline properties) the simulator will
emulate the timecode. If, however, a Controller is connected and receiving real timecode then the simulator can
instead bemade to track this real timecode by selecting Time Source from the Timecode drop-downmenu.

Output Live
Output Live is not possible without associated and patched Controllers but this allows you to view the programming
on the installation itself without having to upload repeatedly after every iteration. TheOutput Live button can also be
found in the Scene view to facilitate the programming of the Scenes, particularly setting the position parameters.

Output Live completely overrides the LPC's playback engine with all calculations instead being performed within
Designer.

Note: If your controller/s is/are password protected, you will need to login to the controller/s from the Network Mode

Output Live Mask
Using anOutput LiveMask, you can choose which fixtures are output to when you useOutput Live. TheOutput Live
Mask can be used to filter which Groups, Layouts, Universes, Controllers or DALI Interfaces can have theOutput
Live data applied to.

Multiple Layouts
If your project includes multiple Layouts, then tabs will be available across the top to choose between them. This will
include Normal Layouts and VLC Layouts.

VLC Layouts
To Simulate VLC output, your computer will need to include support for OpenCL 1.2. You can choose which
computer hardware should be used for this support from the Simulate Preferences. If your computer doesn't support
OpenCL 1.2 then you won't be able to simulate VLC output.

- 250 -

Simulation Audio

Simulation Audio
By selecting Enable simulation audio in Simulate, an additional row will be added to timelines. This allows an audio
track to be dropped onto this row to be played back within Designer when the Timeline is Simulated.

To Import Audio

Audio is imported in the sameway as video clips; fromMapping or theMedia Preset library.

- 251 -

Pharos Designer User Manual

Network Overview
Pharos products are designed to operate on an Ethernet network for maximum scalability and the range can be split
into two classes:

Controllers
The primary processing "brains" in a system, designed to operate as single, stand-alone units or co-operatively as a
scalable system, automatically synchronised andmanaged over the network. All Pharos Controllers have an
integrated web interface for remotemanagement.

Controllers use TCP/IP for communication and, as a result, need to be correctly configured, see Controller
connection.

Once the Controllers have been connected they are then uniquely associated with Controllers in the Designer
project, see Controller association.

Touch Panel Controller (TPC)

The TPC is an advanced lighting controller with an integrated, customisable, capacitive touch screen. It outputs up
to 512 channels of eDMX and is able to output multiple protocols simultaneously. See Controller properties.

TPC With EXT

When using a TPC that is connected to an EXT the TPC functions in largely the sameway. The extra output and
triggering options provided by the EXT will be seamlessly applied to the TPC when the Controller Type in the
Network tab reads "TPC+EXT". This includes the ability to output a physical DMX universe.

Lighting Playback Controllers (LPC)

Threemodels are available for DMX & eDMX lighting control, the LPC 1 (512 control channels), the LPC 2 (1024
control channels) and the LPC 4 (2048 control channels). The LPC 4 can output up to 1024 channels as local DMX -
the remaining channels must be output as eDMX. All 2048 channels may be output as eDMX.

The LPC X is available for eDMX and DVI control with capacities ranging from 10 universes (LPC 10; 5,120 control
channels) to 100 universes (LPC 100; 51,200 control channels).

Unlike commonDMX frame store devices they are extremely powerful and flexible and can be configured in
numerous ways to suit the application, see Controller properties.

Video Lighting Controllers (VLC/ VLC+)

The VLC is designed to handle large single canvases of DMX fixtures e.g. building facades, bridges or media
screens. The VLC is available in capacities ranging from 50DMX universes up to 1500 DMX universes from a single
unit with further scaling over Ethernet.

The VLC+ is additionally available in a 3000 universe option.

- 252 -

Network Overview

Remote Devices
The Pharos range includes various Remote Devices that augment one or more Controllers with additional remote
inputs, outputs and user interfaces.

Remote Devices can only be powered by the PoE network, usemulticast UDP for communication and have varying
configuration options, see Remote Devices.

- 253 -

Pharos Designer User Manual

Controller Connection
Before you can configure and upload to the Controllers they must be connected to the PC running the Designer
software. Depending on the Controller, this connection can generally bemade in one of two ways:

Ethernet
This is themost flexible method of connecting one or more Controllers and is well suited to a permanent installation.
TCP/IP Ethernet itself needs configuration andmanagement, in particular the setting of IP addresses.

If a controller is on an incompatible network, it will be displayed in the Network Mode with Grey text.

DHCP (default)

Pharos Controllers are factory set to receive an IP address from aDHCP server so onemust be present on the
network.

Link Local (DHCP Error)

Should the Controller fail to find a DHCP server it will assign itself a "link local" (169.254.x.x) IP address which can
be used with Designer to establish a temporary connection. However, a DHCP server should be found or a Static IP
address set to establish a permanent connection.

Static IP (optional)

It is sometimes desirable to set a Static IP address so that the IP address of the Controller is always known (DHCP
served IP addresses can change). Refer to Controller configuration.

Multicast

Pharos Controllers and Remote Devices also use a block of Multicast addresses for "discovery" and Remote
Device communication so these addresses must be available: 239.192.38.7 and 239.192.38.8

Default Gateway

Must be consistently set to either nothing or a valid IP address.

Managed Switches And Firewalls

Managed Ethernet switches and your PC's Security Firewall can conspire to make life difficult - by blocking
Multicast addresses for example. Pharos recommends the use of Unmanaged switches and disabling your PC's
Firewall if you're experiencing connection problems.

eDMX considerations

While the LPC X has a second, dedicated Ethernet Protocol port with its own IP settings, the TPC and LPC 1, 2 & 4
must share their single Ethernet port. However, this single Ethernet port can be configured with two IP addresses,
making it easier to manage routing of output protocol data. See Controller Protocols.

- 254 -

Controller Connection

For further information about the Controller hardware and its input/output ports please refer to the Installation Guide
supplied with the unit or available from the website.

Ethernet Over USB
In addition to being able to connect to a controller using a traditional Ethernet connection, Designer is able to
communicate with an LPC using an Ethernet over USB connection. The controller will appear in Designer as if the
connection has beenmade using Ethernet (with the controller having an IP address) and all the same functionality is
available, but the physical connection is made using a USB cable.

Network Window
Once you have connected the Controller, select the Network tab to view your connected Controllers & Remote
Devices:

If a controller is on a different network, and is not discovered on USB, it will appear as grey in the network
spreadsheet. If a controller is on a different network (regardless of discovery on USB), a warningmessage is shown
in the Controller Config tab.

Controller Firmware
IMPORTANT:Controllers must be running the same version of firmware as the Designer software. Controllers with
incompatible firmware will be highlighted in red.

Note:Controller's on a v1.x.x firmware version will not show up in Designer 2. See Conversion for more details.

To Update A Controller's Firmware:
1. Select the incompatible Controller, the row will be highlighted
2. Press Reload Firmware on the network toolbar
3. The firmware update will proceed - youmust not disturb this process

- 255 -

Pharos Designer User Manual

Alternatively a utility application is provided that also allows you to update the LPC X's bootloader and firmware, see
LPC X Recovery Tool. There is a recovery procedure for the TPC and LPC 1/2/4.

The EXT's firmware is updated directly from the TPC. If the TPC detects that a connected EXT has the wrong
firmware version then it will automatically update it - youmust not disturb this process. The EXT's 'TPC Active' LED
will illuminate continuously when this process has completed successfully.

Once all the connected Controllers have compatible firmware you can associate them with project Controllers and
configure their hardware.

- 256 -

Device Association

Device Association
It is here that you connect your project programming in Designer with real, networked Pharos devices:

Project vs Real Devices
The list of Devices is split into two sections: At the top is the list of project Devices whichmay or may not be
associated with real Devices. Underneath is a list of all the unused real Devicess found on the network that have not
been associated with project Devices.

When you create a new project, it will have one or more Devices in it. These Project Devices are purely virtual and
somust be associated with a real Controller on the network before you canOutput Live or Upload.

IMPORTANT:You can only associate a Controller running the same firmware as Designer - Devices running
incompatible firmware will be displayed in red. To update a connected Device's firmware see Controller firmware.

Managing Project Devices

If you will use a different type of Controller for your project, such as a TPC for a touch screen interface or an LPC X
for a high DMX channel count, or more than one Controller if the installation is large or distributed, then you will want
to modify the list of project Controllers.

To Add and Set the Type of a Project Device:
1. Press the New Controller, New Touch Device or New Remote Device button on themode toolbar
2. Select the Device's Type from the dialog, if this is a Touch or Remote Device, select the Controller to attach

it to.
3. Use the Properties pane to give the Device a useful name, perhaps describing where in the installation it is or

what it controls
4. If appropriate, select the number of universes that the Controller supports

- 257 -

Pharos Designer User Manual

The Device has now been added to the project.

If the project has a TPC with an EXT then the EXT will be configured automatically by the TPC. You can add an EXT
to a TPC in the project by checking the 'Configure EXT' check box in the TPC's Interfaces tab.

Alternatively a physical controller can be added to the project by Right-clicking and selecting Add to Project.

To Delete a Project Device:
1. Select the project controller, the row will highlight
2. Press Delete on themode toolbar

IMPORTANT:Deleting a project controller that has been patched will result in the loss of this patch data.

Managing Replicated Projects

An Install Replication is a set of settings that allow you to simply upload the same project to multiple sets of devices.

To Create an Install Replication
l Enable Install Replications in Project Features.
l Select Create Replication in Network
l Associate the replicated controllers with the Real controllers (see below)

Associating Project Controllers With Real Controllers

Once you have added and configured your project Controllers (all that is required for programming and simulating)
youmust associate them with real Controllers on the network.

To Associate a Local Controller:
1. Select the project Controller, the row will highlight
2. In Controller Properties use the Serial Number pull-down to chose a real Controller of the same type to asso-

ciate (the serial number can be found on the base of the LPC 1, 2 & 4, TPC and rear of the LPC X)
3. The real Controller will fuse with the project Controller so completing the row details

To Associate a Remote Controller:
If you know the IP address of a controller, you can use the Find button to input the IP Address of the controller
directly.

This can be used to connect to a controller through a VPN connection or using port forwarding and a public
connection.

Should this be the case, ensure that both Port 80 and Port 38008 are forwarded to the controllers local IP address.

To Identify a Device (Beacon):
1. Select an associated project Device or unused Device
2. Press the Beacon button on themode toolbar, all the Device's status LEDs will flash. The screen backlight of

a Touch Device will pulse.
3. Press Beacon again to return the Device to normal operation

Once all your project Devices have been associated with real Devices you can configure them, test your
programming on the installation itself and finally upload to the Devices for stand-alone operation.

- 258 -

Device Association

Network Primary
OneController in your project must be allocated as the Network Primary, the first project Controller added is chosen
by default. The Network Primary is responsible for network playback synchronisation and for issuing realtime and
astronomical clock triggers. To set the correct date and time set, see Controller Configuration.

To Change The Network Primary:
1. Select the project Controller which is to become the Network Primary
2. Press the Set as Network Primary button in the Properties pane

Web Interface Tools
To View a Controller's Web Interface:

1. Select the Controller
2. Press theWeb Interface button on the Controller toolbar
3. Your computer's default browser will open the Controller's home page (or custom page if one has been cre-

ated)

Device Status
The fields in the device table provide status information:

Number The unique identifier given to each Device in the project

Name The user name given to each Device in the project, typically a name that identifies the
Device's purpose or location

Type The type of Device
Serial The Device's serial number as found on the Device
Status Indicates whether the Device is currently locked
IP Address The Device's IP address which is either statically assigned or obtained from aDHCP server
Firmware The Device's firmware version whichmust match that of Designer

Project Name The name of the project that has been uploaded, as defined in the Project properties, or the pro-
ject's file name.

Capacity The number of available (unused) channels on a Controller
Used Channels The number of used (patched) channels on a Controller

- 259 -

Pharos Designer User Manual

Device Configuration
With a Controller selected, choose Configure on the Network Menu:

Uniquely, these settings are stored on the Controllers themselves, not in the project or as part of the upload. They
can be changed here or by using the web interface. The Controller does not have to be associated with a project
Controller to do so.

Network

Use these fields to set a static IP address for the Controller, by default the Controller is set to receive an IP address
from aDHCP server.

You can also set the Subnet Mask for the controller using CIDR or dotted decimal notation, a Default Gateway and
up to two Domain Name Servers (DNSs).

If the IP settings have been stored on the Controller's memory card as a "TPC.cfg" or "LPC.cfg" file then these fields
will be greyed out.

Logging

Select the verbosity (detail) of the log that can be viewed either via the web interface or from within Designer using
the Controller Log Viewer in theMainMenu and selecting a Controller (which can be connected via Ethernet or
USB):

- 260 -

Device Configuration

Watchdog

Check this to enable the internal watchdog that will reset the Controller automatically in case of a software crash as
a result of either a coding error (“bug”) or a random electromagnetic event such as a power brown-out or spike, nearby
lightning strike or static discharge. A startup trigger will be required to determine what the Controller should do after
such a reset, see triggers.

Remote Logging Via Syslog

Check this to enable logging to the specified IP address. Note that there is a performance penalty to pay for using
Syslog so this should only be enabled for debugging.

NTP Server

Check this and enter the IP address of the appropriate Network Time Protocol (NTP) server. You can also set the
interval to Query the NTP server for the current time.

Note that Controllers with DHCP enabled will also synchronise with a suitably configured DHCP server.

Network Ports

The ports opened by the Controller for access to the web server using HTTP and for access to the FTP server for file
transfer can bemanually configured. This can be useful if there are several Controllers in an installation and remote
access is required via a router setup for port forwarding to each Controller.

By default the Controller uses port 80 for the web server and port 21 for the FTP server.

Admin Password

Enter a password to protect the Controller from unauthorised access. Once a password has been set it will be
required to Upload, Reload Firmware, change the Controller Configuration (these settings) or open the Control and
Configuration sections of the web interface.

Note:When logging into theWeb Interface, the username is "admin"

To Change The Controller Configuration Settings:
1. Make the required changes to any of the fields as described above
2. Press Commit, the settings are then stored on the Controller itself (they are not stored in the project)
3. The Controller will reset

Important: This password cannot be reset if it is forgotten, so ensure it is memorable.

Date And Time

All Controllers have an internal realtime clock which is battery backed and so will operate even when the Controller
is not powered. Whilst the internal realtime clock is accurate, the use of a Network Time server of some sort (NTP,
DHCP) is recommended where possible (see above).

- 261 -

Pharos Designer User Manual

The Date and Time fields display the current settings of the selected Controller's realtime clock. Only the designated
Network Primary needs be accurate as any other networked controllers will automatically synchronize their realtime
clocks to the Network Primary.

Note that the project location settings include the correct GMT offset so, if using these location settings, you should
set the time here to GMT not local time or the offset will be doubled.

To Manually Change The Network Primary's Date And Time:
1. Select the Network Primary
2. Enter the required settings into the Date and Time fields
3. Press Set

To Synchronize The Network Primary's Date And Time To Designer:
1. Select the Network Primary
2. Ensure that the PC running Designer is set to the correct date and time
3. Press Sync to Designer

Memory Card

The capacity of the Controller's memory card is displayed here with the option to format the card if required, press
"Format Memory Card". Formatting the card will erase all project data and so an upload will be required to restore
normal operation.

Storing Configuration Settings On The Memory Card (optional)
After a reset, LPCs look for a file called "lpc.cfg" on thememory card before using its current settings. TPCs look for
a file called "tpc.cfg". You can use a text editor (e.g. Notepad) to create this file and copy it to thememory card to
force the issue, useful for transferring the IP settings on the card with the project data. The format of the file needs to
be:

ip 192.168.42.56 255.255.255.0 192.168.42.250

http 80

dns1 192.168.42.254

dns2 192.168.42.1

ntp 192.168.42.1

syslog 192.168.42.8

loglevel 3

watchdog off

ip Required Defines the IP address, Subnet Mask and Default Gateway for the controller
http optional Defines the HTTP port used by the controller (default 80)
dns1/dns2 optional Defines a Domain Name Server (DNS) for the controller to use to resolve host names
ntp optional Defines the IP address of an ntp server that the controller should get its time from.
syslog optional Defines the IP Address of a Syslog server on the network
loglevel optional Defines the log level to be used by the controller, options

- 262 -

Device Configuration

watchdog off optional Disables the controller's watchdog (not recommended), omit line to enable watchdog

loglevel Options:

0. Critical
1. Terse
2. Normal
3. Extended
4. Verbose
5. Debug

Using the tpc.cfg or lpc.cfg file to store the Controller's configuration on thememory card allows a Controller to be
swapped, in case of failure for example, by just moving thememory card into another Controller.

Any settings within a *.cfg files will override settings set from within Designer.

Note: This file needs to be placed on the root of thememory card

- 263 -

Pharos Designer User Manual

Device Properties
With a Device selected, choose the Properties tab:

Identification

Use these fields to identify a project device with a name and type, then associate it with a real device and set the
Network Primary, see Device Association.

Screen

TPC

User interfaces for the TPC are created using the companion Interface Editor application, which is available to
download from our website. Browse to the Interface Editor project file to associate it with the selected TPC.
Changes to the Interface Editor project file will automatically be detected. To remove the current Interface Editor
project file, click the clear button.

Set the backlight brightness for normal operation and for when the TPC has been inactive for a period of time. The
inactivity time is also set here, along with the time before the screen turns off completely.

Set whether the backlight brightness should automatically adjust for changes in the ambient light level, and whether
the screen should turn on if the proximity sensor detects someone walking up to it.

Playback Refresh Rate

Select betweenNormal (33Hz: default, recommended), High (44Hz) or Low (20Hz: useful for older fixtures with
DMX compatibility issues).

- 264 -

Device Properties

Triggers

If your project uses realtime or astronomical triggers then, when the Controller starts up, youmay well want to assert
the correct show state for the current time. You can set each Controller to do this automatically by checking the
“Execute realtime triggers on startup” option.

When this option is selected the Controller will execute all the realtime and astronomical triggers that would have
fired between the user-specified time and the current time. You should select a time of day when your project is
inactive or at its least active. Running all triggers from that point ensures that your project is in the correct state.

Any startup trigger in your project will run first and then any pending realtime or astronomical triggers. The Controller
will attempt to preserve the timing so that timelines will be in the correct place as if it had been running normally.

IMPORTANT:Changes made to a Controller's properties will only take effect after an upload.

- 265 -

Pharos Designer User Manual

Controller Protocols
With a Controller selected, choose the Protocols tab which is also available from the Patch window:

Depending on the Controller type selected, the Protocols tab allows you to configure the available eDMX and other
output protocols:

Network 2 (Protocol)

TPC, LPC 1, 2 & 4

Though the TPC and LPC 1, 2 & 4 only have a single Ethernet port, this port may be configured with two
IP addresses - one for management data and the other for output protocol data. The default setting is for this dual IP
mode to be disabled, so that the same IP settings are used for management and output protocol data. Dual IP mode
is particularly useful for working with KiNET power supplies, whichmust use 10.xx.xx.xx addresses.

The Network 2 virtual port can be configured with a VLAN tag to route the data to the relevant VLAN when used
managed networks and VLANs to separate theManagement and Data networks within the network infrastructure.

LPC X, VLC and VLC+

The LPC X, VLC and VLC+have a dedicated Ethernet Protocol port. The default setting is to obtain IP settings via
DHCP but static IP settings can alternatively be set as required.

DMX Proxy (LPC 1 Only)
If a Designer project has a TPC and an LPC 1, the TPC can output local DMX via the LPC's second DMX port. With
the LPC 1 selected, choose the TPC from the drop down list.

- 266 -

Controller protocols

Art-Net Output Customisation
By default, a controller with less than 30 universes of Art-Net patched will broadcast all data until a device requests
unicast for a specific universe. Controllers with more than 30 Art-Net universes patched will only unicast data to
devices requesting universe data and will not automatically broadcast.

There is the option to 'Disable Broadcast' for a controller. The controller will still unicast data to devices that request
it. There is also the option to 'Always Broadcast' on a per universe basis. This will force the controller to always
broadcast that universe's data. 'Always Broadcast' will override the 'Disable Broadcast' option.

Within the Protocol Properties, is the option to enable Art-Net Sync, which can be used to ensuremultiple Art-Net
receivers stay in sync (if they are capable of receiving this)

KiNET Output Customisation
Within the Protocol Properties, is the option to enable KiNET Sync, which can be used to ensuremultiple KiNET
receivers stay in sync (if they are capable of receiving this)

DVI (LPC X Only)
To output data using the DVI port youmust first create a pixel matrix that matches the LED controller's pixel map.
Once this has been done, use the Pixel Matrix pull-down on the protocol tab to select whichmatrix will be output via
the DVI port. Any programming for the fixtures in the pixel matrix will now output on the DVI port, not just
programming applied directly to the pixel matrix.

The LPC X's DVI port is set to a fixed 1024x768@60Hz resolution which is compatible with most LED controllers.
The LED controller (or monitor) MUST be connected when the LPC X boots or resets for the port to become active.

The X and Y offset of the pixel matrix within the 1024x768 DVI output can be set as required. The size of the pixel
matrix can be scaled up using themultiplier setting - each pixel in thematrix will occupy an area equal to the square
of themultiplier on the DVI output.

eDMX Pass-Through
When using an LPC or TPC+EXT in a project it is possible to allow eDMX from another eDMX source to be passed
through to the controller’s DMX ports. With an LPC or TPC+EXT selected, the eDMX Pass-Through settings will be
shown. Select which universe the DMX port will be transmitting. Note that with an LPC 2 you'll be able to choose a
different universe for each DMX port on the controller. There is also the option to auto-revert to the project’s output if
eDMX isn't received for a specified amount of time.

This setting with setup the port to allow the eDMX pass-through to occur, but is enabled and disabled through
Triggers

Note that only Art-Net and sACN are currently supported for eDMX Pass-Through.

IMPORTANT:Changes made to a Controller's protocols will only take effect after an upload.

eDMX Pass Through Merge

If sACN is being used for eDMX Pass Through andmultiple sources are received, the controller will use the Source
with the Highest priority.

If multiple streams are received with the same priority:

- 267 -

Pharos Designer User Manual

l If there are exactly 2 streams, the controller will do a HTP merge (per channel). Meaning the highest level for
each channel from either source will be used.

l If more than 2 sources are received, then all streams are dropped.

- 268 -

Controller Interfaces

Controller Interfaces
Choose the Interfaces tab to configure the input/output interfaces for a Controller:

IMPORTANT:Changes made to a Controller's interfaces will only take effect after an upload.

Configure EXT (TPC Only)

Check the "Configure EXT" box if you want to see EXT interfacing options for a TPC.

Inputs (LPC 1, 2 & 4 And TPC With EXT Only)

Inputs can be individually configured as either Contact Closure, Digital or Analog with the latter twomodes allowing
for the threshold or range to be selected. Themaximum voltage range is 0-24V and the smallest measurable change
is 0.25V.

Check the "Check State At Startup" box if you want the inputs to be read and acted upon by triggers at startup.

The Held Timeout is used to set a timeout for the Held event, and the Repeat interval is used to set the interval the
Repeat.

Serial Port(s) (not Standalone TPC)

Use these fields to configure the Controller's integrated RS232 or RS232/485 serial port(s) specifying the baud rate,
the number of data and stop bits as well as any parity bits used tomatch the settings of the connected device.

Note that the Controllers do not use a specific serial protocol but instead can generate or match any serial string by
setting up the appropriate triggers. That being said, the serial port on the LPC 1/2/4 hardware can be configured here
to receive the DMX protocol directly.

- 269 -

Pharos Designer User Manual

MIDI (LPC 1, 2 & 4 Only)

The LPC's MIDI Input can readMIDI Timecode (MTC) allowing a project to be synchronised with audio-visual or
show control equipment. The configuration options are:

l Route To - select one of the six Timecode Buses to which theMIDI timecode (MTC) should be routed.
l Regenerate for - select the number of frames that should automatically be generated in the case of loss of a
valid signal.

l Ignore jumps for - select the number of frames that should be considered a valid jump in the timecode value.

MIDI messages other thenMTC, for exampleMIDI Notes or MIDI Show Control (MSC), require no configuration and
these protocols can be used simply by setting up the appropriate triggers.

Ethernet

The Controller's Ethernet port can send and receive Ethernet messages allowing a presentation to be synchronised
with BuildingManagement Systems (BMS) or show control equipment. The configuration options are:

l Route To - select one of the five Ethernet Buses to which the incoming Ethernet messages should be routed.
l Type - select themessaging protocol (UDP, TCP, TCP Client or Multicast - the latter will require an IP
address).

l Port - enter the appropriate port.

When 'TCP' is selected the controller will only sendmessages after the client has already opened a TCP
connection. With 'TCP Client' selected the controller will not receivemessages on the bus until the first time the
controller tries to send amessage, at which point a connection will bemade. Once this connection has beenmade
messages sent to the controller will be accepted.

Note that the Controllers do not use a specific Ethernet protocol but instead can generate or match any Ethernet
string by setting up the appropriate triggers.

Certain ports are disallowed due to them being used by other processes in the controller:

UDP TCP
38007 38007
38008 38008
5568 HTTP: 80 (unless changed)
6454 HTTPS: 443 (unless changed)
42012
49800
55930

DMX-In

The LPCsupports DMX Input as raw DMX on the Serial Port, configured under Serial Port, or as eDMX (Art-Net or
sACN). Select either DMX, Art-Net or sACN and a Universe number for DMX reception.

The TPC supports DMX Input via Art-Net and sACN. Select either Art-Net or sACN and a Universe number for
eDMX reception.

- 270 -

Controller Interfaces

The LPC X supports DMX Input via Art-Net or sACN. Select either DMX for the integrated port or Art-Net or sACN
and a Universe number for DMX reception.

The VLC/ VLC+ supports DMX Input via Art-Net or sACN. Select either DMX for the integrated port or Art-Net or
sACN and a Universe number for DMX reception.

When using Art-Net as the Input source, the Universemust be specified as Net/Sub-net/Universe.

DMX Input Merge
If sACN is being used for DMX Input andmultiple sources are received, the controller will use the Source with the
Highest priority.

If multiple streams are received with the same priority:

l If there are exactly 2 streams, the controller will do a HTP merge (per channel). Meaning the highest level for
each channel from either source will be used.

l If more than 2 sources are received, then all streams are dropped.

DALI (TPC+EXT only)

The EXT has a DALI bus interface. This can be used to control DALI ballasts via timeline programming and to
receive DALI commands for use in DALI Input triggers.

Video Input (LPC X, VLC and VLC+ only)

The LPC X can receive video in to the controller over the DVI-D connection on the back.

The incoming video can be scaled up or down to an appropriate size for the pixel matrix.

Maximum size is 1920x1080 andminimum is 48x32.

By default, scaling is disabled.

Note: The VLC/VLC+ automatically scales the incoming video to the size of the Content Target

Audio (LPC X, VLC and VLC+ only)

The LPC X, VLC and VLC+ can be used to output timeline audio. The Default Volume for this can be set here. The
current level can be set using the Set Volume Action.

- 271 -

Pharos Designer User Manual

Remote Devices
Please refer to the documentation supplied with the units for hardware details and installation instructions.

Connection
Remote Devices can only be connected using a Power over Ethernet (PoE) connection so a suitable PoE repeater or
switchmust be provided.

Multicast

Discovery of Remote Devices, from Designer or a controller, is achieved usingmulticast traffic with the
239.192.38.8multicast group. For this reason, multicast must be available on the your network.

TCP/IP

Each remote Device in the systemmust have an IP Address in the same range as the controllers in the project. This
TCP connection is used for all communications with the controller, once the discovery process has been completed
usingmulticast.

The Device table allows you tomanage and configure any Remote Devices in the project and found on the network:

Project Vs Real Remote Devices
The list of Remote Devices is split into two sections: At the top is the list of project devices whichmay or may not be
associated with real devices. Underneath is a list of all the unused real devices found on the network that have not
been associated with project devices.

- 272 -

Remote Devices

Managing Project Remote Devices

To add and set the type of a project Remote Device:
1. Press the New Remote Device button on theMode toolbar
2. In the Add Remote Device dialog, select the device type (RIO 80, RIO 44, RIO 08, RIO A, RIOD, BPS,

TPS)
3. Choose the device's number (the address selected on the device itself, see Associating Remote Devices

below)
4. Choose the device's controller.
5. Press Add, the Remote Device will be added to the project (and associated to a real device if one of the cor-

rect type and address is found on the network)

To delete a project Remote Device:
1. Select the project Remote Device by clicking its row, the row will highlight
2. Press Delete on theMode toolbar
3. The Remote Device will be removed from the project and, if no longer associated at all, the real device will

move to the bottom of the device table

Remote Device Firmware

IMPORTANT:Remote Device firmwaremay need to be updated if a new version of Designer software has been
installed. Devices with incompatible firmware will be highlighted in red.

To update a Remote Device's firmware:
1. Select the incompatible device by pressing the left hand button, the row will be highlighted
2. Press Reload Firmware on the Remote Device toolbar
3. The firmware update will proceed - youmust not disturb this process

Associating Remote Devices

Unlike Controllers, which are uniquely associated with a project via their serial number, Remote Devices are
associated by their address as selected on the unit itself. Fifteen automatic addresses (1>15) are provided with a
manual option (M) for selectingmore (16>100). Remote devices may share the same address and thus identity,
useful for repeating a user interface at both ends of a corridor for example.

To associate a project Remote Device with a real device (automatic addresses 1>15):
1. Select the project Remote Device by clicking the left hand button, the row will highlight
2. Ensure that the device type and address matches a suitable unit, addressed at this number, found on the net-

work
3. The real device will move from the Unused list and fuse with the project device so completing the row details

To associate a project Remote Device with a real device (manual addresses 16>100):
1. Ensure that the Remote Device is addressed to the "M" setting, you will need to note it's serial number (label

on back)
2. Select the project Remote Device by clicking the left hand button, the row will highlight
3. Select the correct device type and the desired address in the range 16>100

- 273 -

Pharos Designer User Manual

4. Select the Remote Device's serial number from the pull-downmenu of devices found on the network
5. The real device will move from the Unused list and fuse with the project device so completing the row details

Once all your project Remote Devices have been associated with real devices you can configure them, test your
programming on the installation itself and finally upload to the Controllers for stand-alone operation.

Remote Input Output (RIO) Device Properties

Serial Port

The RIO 80, RIO 44 and RIO 08 have amulti-protocol serial port that can be configured to either RS232 full-duplex or
RS485 half-duplex operation. The configuration options are:

l Type - select RS232 or RS485 as required
l Baud rate - select the baud rate
l Data bits - select the number of data bits (typically 8)
l Stop bits - select the number of stop bits
l Parity - select the parity type

I/O Configuration

The RIO 80, RIO 44 and RIO 08 differ by virtue of the number and type of I/O ports:

RIO 80 Eight inputs, no outputs & serial port
RIO 44 Four inputs, four outputs & serial port
RIO 08 No inputs, eight outputs & serial port

Inputs can be individually configured as either Contact Closure, Digital or Analog with the latter twomodes allowing
for the threshold or range to be selected. Outputs can be individually configured with a Startup state, whether the
relay is on or off at startup.

Check the "Check State At Startup" box if you want the inputs to be read and acted upon by triggers at startup.

The Held Timeout is used to set a timeout for the Held event, and the Repeat interval is used to set the interval the
Repeat.

See triggers for usage.

Audio

The stereo balanced line level audio input of a RIO A can be used for Audio triggers. Select the Audio button to
enable this mode and to see the following configuration options:

l Route To - select the Audio Bus to route the incoming audio to
l Freq. Bands - select the number of frequency bands with which to analyse the incoming audio (max 30 per
channel; the frequency bands sit along a logarithmic scale and have been chosen for an optimum response to
music)

l Gain - turn Auto gain on or off, and set themanual gain level
l Peak Decay Rate - set the rate at which peaks in each frequency band will decay (the peak level can be used
in triggers)

l Initially Enabled - the audio feed from aRIO A can be turned on or off by triggers, and here you can set the ini-
tial state

See triggers for usage.

- 274 -

Remote Devices

Timecode

The stereo balanced line level audio input of a RIO A can be used for timecode input. Select the Timecode button to
enable this mode and to see the following configuration options:

l Channel - the audio input of the RIO A that the timecode input will be connected to
l Route To - select the Timecode Bus to route the timecode to
l Regenerate for - select the number of frames that will be generated by the RIO A's software flywheel in the
event of a drop in timecode signal

l Ignore jumps for - select themaximum size of jump in incoming frames that will be ignored

MIDI

The RIO A has aMIDI input and output interface. This can either be used in Remote DeviceMIDI triggers, or it can
receiveMIDI timecode. The configuration options here are for MIDI timecode only:

l Route To - select the Timecode Bus to route theMIDI timecode to
l Regenerate for - select the number of frames that will be generated by the RIO A's software flywheel in the
event of a drop inMIDI timecode signal

l Ignore jumps for - select themaximum size of jump in incoming frames that will be ignored

DALI

The RIOD has a DALI bus interface. This can be used to control DALI ballasts via timeline programming or direct
commands or to receive DALI commands for use in DALI Input triggers.

Button Panel Station (BPS) Device Properties

Properties

The global properties for each BPS are set here:

l Minimum LED Intensity - set a percentage value as required, useful for ensuring that the buttons are always
visible

l Held Timeout - set the amount of time inmilliseconds that a buttonmust be pressed to be considered as
being held

l Repeat Interval - set the interval in milliseconds that a held button will transmit a repeat signal

Button Configuration

Each BPS has eight buttons with an integral white LED and the default setting for each button is set here:

l Effect - select the default LED effect (Off, Static, Slow Flash etc.)
l Intensity - set the default LED intensity (0% will equal theMinimum LED Intensity as set above)

See triggers for usage and BPS learning IR receiver for infrared operation.

- 275 -

Pharos Designer User Manual

Upload
Once you have confirmed that your programming is as you want you can upload to the Controllers by either pressing
the Upload button on the Network window or via File > Upload (Ctrl + U):

Direct upload (as opposed to remote, see the web interface), is not possible without connected Controllers (see the
network section) but this allows you to upload your programming to one or more Controllers for stand alone
operation.

You can either use the "Upload All" button to upload to all connected Controllers or select specific Controllers from
list and press "Upload" to target them alone.

IMPORTANT:Changes made to the DALI configuration (including DALI groups and scenes) must be uploaded
separately to the DALI ballasts, see DALI.

Issues

- 276 -

Upload

When you open the Upload dialog, there is a tab which lists potential errors with your project. Designer will check
things like triggers and hardware configuration tomake sure that there are no inconsistencies. If any issues are
found, the Issues tab will be opened automatically and a description of each issue will be listed so that you can take
corrective action, see Issues. You can proceed with the Upload ignoring the errors should you wish.

Restore After Upload
Check the "Restore after upload" box if you want the Controllers to continue playback where they left off, useful for
soft openings when programming is still being tweaked while the installation is open to the public. Note however that
changes to the fixture schedule or patch will force the Controllers to reset playback and so cause amomentary black
out.

Close Upload Project After Upload All
Check the "Close Upload Project after Upload All" box to close the Upload dialog once the upload process has
completed successfully. This option will persist across all future uploads.

Login
If your controller has a password set for it, you will need to log in to the controller before you can upload to it using the
Login button.

Saving Compiled Project
The Save button can be used to Save the compiled project file rather than uploading it to the controller.
This compiled project can be used to upload over the controller's web interface, or by putting the file on the
controller's memory.

The TPS hosts a cut downweb interface that can be used to upload a compiled project file remotely.

What's Actually Uploaded?
A compressed version of the standard project file is uploaded to the controller. Typically (space allowing) all media
and background images will be uploaded, along with all trigger, timeline and scene information. All controllers get all
the data in the project (allowing the project to be downloaded from any controller).

Can The Project File Be Retrieved From The Controller(s)?
The project file can be downloaded from the Network Mode or the Controller's web interface.

Press the download button on the Network Mode toolbar or the download project button on the Controller's Web
Interface.

- 277 -

Pharos Designer User Manual

Cloud Association
Controllers within Designer can be added to a connected Cloud site.

Adding Devices
To add a device, youmust first log into your Pharos Cloud account in Project Properties and select the relevant Site
when prompted.

To Add the Controller to the Site
l Associate the controller with a controller in the project
l Select the project controller
l In the controller's Properties in the right hand pane, Click Add Controller to Cloud.

This will automatically start the process of adding the controller to the specified Cloud Site.

Once the process is complete, a Cloud Icon will appear in the controller's Status column.

Removing Devices
When connected to a Controller locally, the Disconnect Controller from Cloud option can be used to disassociate the
controller with the Pharos Cloud Site

Errors
The Controller's Log will show the progress of the controller provisioning to Pharos Cloud.

Sometimes an error may be logged, e.g. if the controller does not have a NameServer correctly configured, or does
not have internet access.

Uploading to a Cloud Site
Once you are connected to your Cloud Site, and your controllers are associated, you can upload your project to the
Devices in the Cloud Site.

The Upload window will allow you to Upload to Cloud, and an option to choose whether to also Transfer the project to
the controller.

- 278 -

Cloud Association

If you don't automatically transfer the project, this can be done from the Files page within each controller in the
Pharos Cloud Site.

- 279 -

Pharos Designer User Manual

Default Web Interface
The Controller's internal web interface is a very powerful diagnostic andmanagement tool. You can view a
Controller's web interface from within Designer or, for remote access, browse to the index page at
http://xxx.xxx.xxx.xxx/default/index.lsp, where xxx.xxx.xxx.xxx is the IP address of the Controller.

Some pages may not always be visible if they aren't relevant to the current project file (or if there isn't a project
loaded) e.g. IO Modules.

Use the navigation buttons across the top to select these pages:

Home

The home page provides general information about the status of the Controller: Serial number, type, IP address,
loaded project details andmemory usage. The bootloader and firmware versions andMAC address are also given for
reference.

The current uptime of the controller and last Boot Reason are shown to aid troubleshooting.

Note: The reset reason is not available on LPC X Rev2 or VLC

From here, it is also possible to download the project file that is currently running on the controller.

For the LPC X, VLC and VLC+ particular attention should be paid to the temperature readings; insufficient ventilation
may cause the ambient temperature to rise and thus system & CPU temperatures to reach excessive levels,
degrading performance.

- 280 -

Default Web Interface

Project Status

The status page provides feedback on the current state of playback:

Timelines

All timelines are listed with their current state and running time:

--- Inactive, the timeline has not run since the last reset
Running The timeline is running and contributing to the output (items "on stage")

Running (Inactive) The timeline is running in the background and not contributing to the output, generally
because it has been overridden

Halted The timeline is halted and contributing to the output
Halted (Inactive) The timeline is halted in the background and not contributing to the output
Holding at End The timeline is holding at end and contributing to the output
Holding at End (Inactive) The timeline is holding at end in the background and not contributing to the output
Released Inactive, the timeline has run but has been explicitly released

In systems with more than one Controller it is important to understand that this timeline status is only pertinent to the
Controller being accessed. For example, the accessed Controller may report that a timeline is Running (Inactive)
because its fixtures are not contributing to the output while another Controller may well be Running (Active) because
its fixtures are contributing to the output. In such systems the complete status can only be determined by
interrogating all Controllers.

Scenes

All Scenes are listed with their current state:

Started The Scene is being played back on at least one fixture
Started (inactive) The Scene has been started, but is not affecting the output, generally because it has

- 281 -

Pharos Designer User Manual

been overridden
Released The Scene is not being output

In systems with more than one Controller it is important to understand that this scene status is only pertinent to the
Controller being accessed. For example, the accessed Controller may report that a scene is Started (Inactive)
because its fixtures are not contributing to the output while another Controller may well be Started because its
fixtures are contributing to the output. In such systems the complete status can only be determined by interrogating
all Controllers.

Groups

All groups are listed with their current intensity level.

Content Targets

On a VLC or VLC+, Scenes andGroups are replaced by the controller's content target/s. The current intensity
master for each content target will be shown.

Use this page in conjunction with the Control and Log pages to interrogate and debug an installation.

Log

The log can be cleared and saved to file using the Clear and Save buttons. Two types of log are provided:

General Log

A blow-by-blow account of all activity including input/output,RS232 serial strings for example, and trigger matching.
Extremely useful in helping debug complex interfacing and triggering arrangements. Alternatively, the log can be
viewed directly from within Designer over an Ethernet or USB connection using View > Controller Log.

- 282 -

Default Web Interface

System Log

A less verbose log of the Controller's system activity, useful for examining the boot-up sequence to help debug
problems.

Log Filtering

Filter down the log tomessages about specific topics using the filter buttons across the top of the log view.

You can also filter the log by text using the Text Filter box on the right hand side.

Show Lines

The Show Lines control allows you to specify how many lines of the log to display. The default is the last 50 lines.

Output

View Output

Select the Protocol/DMX Port to examine a numerical snapshot of the control data being output, refreshed every 5
seconds. Select DVI to examine a graphical snapshot of the pixel matrix output.

The channel blocks will change colour depending on how the channel is being controlled:

White Playback
Grey Unpatched
Blue Border Output Live
Red border Parked

Use in conjunction with Control and Status pages to debug an installation.

- 283 -

Pharos Designer User Manual

A message will also be displayed if the selected output has been disabled by a Disable Output Action.

Park And Unpark

Password protected if set. Enter "admin" for the User Name and then the password.

Park allows you to lock the value of a particular channel without actually altering your programming. This can be
useful to turn off a fixture that is misbehaving temporarily or to make sure a working light stays on while you are
programming.

Park can be accessed from the output view of the web interface, simply enter the channel or range of channels and
the value at which to park. Parked channels are shown in red within the output view. There is the option to Unpark
from the same view.

Parked channels will remain parked when you upload shows or output live. However all parked channels will be
cleared if the Controller is reset or the power is cycled.

Input

Inputs

Use to examine the status of the Controller's inputs.

Note:Contact closure return High when the input is open and Low when the input is closed.

DMX

Select the DMX input to examine a snapshot of the DMX values being input, useful for debugging DMX triggering
and control.

- 284 -

Default Web Interface

DVI

On LPC X or VLC/VLC+ the current Live Video input will be displayed on the Input page, with the ability to manually
refresh the image.

DALI

CSV Export

This information can be viewed in a comma separated values file by clicking the Save button. Copy, paste and save
the information you require in a separate document.

Emergency Test Schedule

Only populated if the current interface has emergency ballasts present. View information about when Emergency
Ballast tests are due to take place as well as the time and date of previous tests. Also view the uptime of the DALI
bus.

Emergency Ballast Errors

Lists all reported errors reported by emergency fixtures on the current DALI interface. Errors will show ballast
address, tests failed and reported errors.

Once a ballast has been repaired it can bemarked as fixed here or by using triggers. Once a ballast has beenmarked
as fixed it will remain in the Ballast Errors section until a subsequent test has confirmed that the fixture is indeed
operational again.

- 285 -

Pharos Designer User Manual

Ballast Status

Lists all ballasts and reported status on the current interface. Standard ballasts show the ballast Address, Name,
Status and Level; emergency ballasts also show Battery Charge, Emergency LampHours and Total LampHours.

Refresh Ballast Status

Sends the DALI commands to refresh the status of all ballasts on the interface, and updates the table.

Last Status Check

The date and time when a ballast’s status was last updated.

Refresh Status

Sends the DALI commands to refresh the status of a specific ballast on the interface.

Recent Power Failures

Lists any reports of bus power failures for the current interface.

Network

The Network Page allows access to all the devices in the project.

- 286 -

Default Web Interface

IO Modules

The IO Modules Page will list all the IO Module instances in use that are able to provide feedback of data or settings.

Control

A Controller can be controlled remotely in two ways:

Command Line

An advanced feature that allows direct control of a specific Controller's fixtures, timelines and even DMX channels
via the script engine, see command line reference.

- 287 -

Pharos Designer User Manual

Alternatively the command line can be customised to run as a Lua Trigger script, see web interface settings for
details.

Triggers

Triggers in the project, together with user annotation, are listed here and can be fired by clicking on them. Since a
network of multiple Controllers share triggers, firing triggers from one Controller's web interface will trigger all the
Controllers in the project.

Note: Triggers set to Hidden in the project will not be displayed

Triggers on the default Control web page will not test conditions by default, check the Test Conditions box to text
conditions before firing the trigger.

Dynamic Text Slots

All the Dynamic text slots are listed with their current value. You can edit any text slot and changes will take effect
according to the preset settings on the timeline (immediately, next cycle, on timeline restart).

File Manager
Optionally, files can be uploaded to the controller's SD Card using the File Manager tab within the web interface.

Configuration
Allows you to change any of the controller configuration options as described in Controller configuration.

- 288 -

Default Web Interface

All the Controller's configuration settings are displayed and can be changed here, see configuration for details.

Remote Upload

In addition, at the bottom of the page, is themeans to upload a project file remotely via the web interface as an
alternative to uploading directly from Designer. See the network section to learn how to generate a file for remote
uploading.

IMPORTANT:Controllers must be running the same version of firmware as the Designer software. Uploading a
project file to a Controller running different firmwaremay result in the project failing to load and run. Check the
Controller's home page to determine compatibility before attempting a remote upload.

Custom Page
If a CustomWeb Interface has been added, this can be accessed from the dropdown in the top right hand corner.

Log In
If the project has been configured with any user access accounts, then to access the web interface, users must use
the Log In option in the top right.

This login uses the user names and passwords specified in the Project > Web Interface tab.

Alternatively, if you are using the Hardware password, configured in the Controller Configuration, the usernamewill
be "admin" and the password will be the password set in the configuration.

- 289 -

Pharos Designer User Manual

Note: The web interface uses Web Socket connections (RFC 6455), and somemanaged networks and proxy
servers block these connections. If you don't see the web interface populating with data, please check whether your
network is blocking web sockets

Note:Sometimes Ad-blockers can affect access to controllers with passwords set. If issues are seen, the
controller's IP Address should beWhitelisted.

- 290 -

CustomWeb Interface

Custom Web Interface
To add a custom web page, or set of pages, to the web interface on a Controller, go to Project Mode, Web Interface
Tab, Custom Web Interface and select Edit...

This will open a dialog that shows the files that currently make up your custom web interface:

Adding Files
To Add files to the web interface, click Import. This will allow you to add files to the current folder selected within the
Custom Web Interface tool.

Any file type can be included, but since they are stored as part of the project file, be aware that they will take away
from space available for programming, and will increase show upload times.

Adding Folders
To add sub-directories to the web interface structure, use the New Folder button. This will add the folder to the
directory structure and allow you to add files to the new folder.

Removing Files Or Folders
To remove a file or folder, select the file or folder and press Delete.

JavaScript Query Library
Alternatively, the controller's web server includes a JavaScript Query library which can be used to fire triggers and
also to query the controller for information about its state and properties.

See the Controller API for more information.

Examples
Examples of CustomWeb Interfaces are available on our website.

- 291 -

https://www.pharoscontrols.com/downloads/resources/custom-web-interfaces/

Pharos Designer User Manual

Command Line
The Controller has a command line entry box in the Control page of its web interface. Text entered in this command
line is interpreted by a Lua script specified by the user as part of the project configuration. Users may write their own
scripts if they wish (see Lua scripts) but a standard script “commandline.lua” is available here.

IMPORTANT:Note that by default there is no command line script installed. Most installations will not require a
command line and so it is inactive by default. If you wish to use the standard command line script youmust use the “
Command Line Parser” section of theWeb Interface section of Project Mode to select the script.

The command line syntax defined in the standard commandline.lua script has the following commands, where x,y
and z represent numbers and [] indicates optional syntax:

Selections

x
x-y
x/y
x-y/z

where x, y and z are the fixture number, '-' selects a range and '/' combines discrete selections or ranges.

Setting Intensity

x@y[%][tz]

where x is the fixture number, y is the level (either as a DMX value or as a percentage) and z is an optional time in
seconds. If a time is not specified then it is treated as a snap change.

Examples:

1@127 Set intensity of fixture 1 to 127 immediately
2@50% Set intensity of fixture 2 to 50% (127) immediately
3@100%t5.5 Set intensity of fixture 3 to 100% fading over 5.5 seconds

Setting RGB

Setting red, green and blue uses the same syntax as intensity, but replacing the@ with r for red, g for green, and b
for blue.

Examples:

1r255 Set red of fixture 1 to 255 immediately
3g0 Set green of fixture 3 to 0 immediately
7b100%t2 Set blue of fixture 7 to 100% fading over 2 seconds

Note that the default values for red, green and blue are 100% (255) to give white. So tomake a fixture output the
colour red then you will need to set green and blue to zero.

You can also apply multiple settings to the same selection of fixtures in a single command. For example:

- 292 -

Command line

1-25@100%r255b255g0 Set fixtures 1 through 25 to 100% intensity, red to 255, blue to 255 and green to
0 immediately

Clearing Fixture Settings

xc[ty]

where x is the fixture number and y is an optional time in seconds.

Examples:

1c Clear settings for fixture 1 immediately
5ct6.5 Clear settings for fixture 5 fading over 6.5 seconds

Clearing All Fixtures Settings

ca[tx]

where x is an optional time in seconds.

Examples:

ca Clear settings for all fixtures immediately
cat10 Clear settings for all fixtures fading over 10 seconds

Multiple Commands

Multiple commands can be applied from a single command line if separated by commas.

Examples:

1@100%,1r0,1b0,1g255 Set intensity of fixture 1 to 100%, red and blue to 0 and green to 255

1ct5,4r255,4@75%t5 Clear settings for fixture 1 fading over 5 seconds, set red for fixture 4 to 255
immediately and then set intensity of fixture 4 to 75% fading over 5 seconds

Interaction With Timeline Playback

Settings applied from the command line are applied as if from a high priority timeline, so they will override all normal
timeline programming until cleared. Fades to and from command line settings behave just like fades between
timelines.

- 293 -

Pharos Designer User Manual

.htaccess Files

.htaccess files can be used to control user access to certain parts of a CustomWeb Interface. Typically the
filenamewill be “.htaccess”, the full stop (.) indicating that this is a hidden file.

When someone navigates to the controller’s IP Address, the .htaccess file/s within the custom web interface files
will determine which parts of the web interface the user can get to, based on their login details.

Example Web Interface Structure
Below is an example of a custom web interface file structure.

root directory

index.html

login.html

.htaccess

groups

admin // directory

.htaccess

index.html

admin.html

Files
Top Level .htaccess File

AuthGroupFile groups

AuthFormLoginRequiredLocation login.html

The AuthGroupFile line is used to link to the Groups file defined below.

The AuthLoginRequiredLocation line is used to define a custom login page (if the user isn’t authorised). If this line
isn’t present then the default login page will be used. For more information about authentication, see Authentication

Groups File
admin: bob ted

This file contains a list of the users in each group of the web interface. Each line takes the form GroupName: User1
User2 User3. This applies to every folder, not just the one the .htaccess file is in. If a user is listed here it must also
be added to the web users in the web interface pane and given a password.

- 294 -

.htaccess Files

.htaccess File In Admin Folder
DirectoryIndex admin.html

Require group admin

Within a folder, you can have a .htacces file to define the groups that can access the files within the folder.

DirectoryIndex defines the URL of the page to be served if the directory is requested. If it is not present then it
defaults to a file named index.xhtml, index.html, index.htm, index.lp, index.lsp, index.lua, index.cgi, index.shtml or
index.php.

Require group defines which group/s are allowed to access the files in this folder.

- 295 -

Pharos Designer User Manual

Main Menu Tools Overview
TheMainMenu contains several useful tools which can be used for troubleshooting and high level functions:

l Output Viewer
l Controller Log Viewer
l Import Object
l Export Object
l Preferences

- 296 -

Output viewer

Output Viewer
Select Output viewer from themainmenu to open this window:

Use the Controller, Protocol and Universe pull-downs to select the Controller and DMX universe that you wish to
view. What you will see depends on the status of your patch and the simulator:

Unpatched Universe

If the universe is not patched then all values will be zero (0) regardless of the simulator's status.

Patched, Simulator Not Running (reset)

If the universe is patched and the simulator is not running then you will see the default values for the fixtures. These
are the values that the Controller will output after a reset or power cycle and prior to a timeline running, see
Precedent.

Patched, Simulator Running (playing Or Paused)

If the universe is patched and the simulator is running then you will see the values that the Controller will generate
when it runs this timeline. Designer uses exactly the same playback algorithms as the Controller so what you see
with the DMX viewer is what you'll get with the Controller.

Output Live

If you have connected Controllers then you will be able to select Output Live in the simulator to have Designer
generate the DMX values directly, the Controllers acting purely as a DMX driver. In this case what you see in the
DMX viewer is exactly what is being output to the fixtures in realtime.

- 297 -

Pharos Designer User Manual

Controller Log Viewer
Select Controller LogWindow from theMainMenu to open this window:

This windows displays the same information as you get on the Log page of the controller's web interface.

The log can be filtered by:

l Controller
l Log Level
l Log Type

- 298 -

Import Objects Overview

Import Objects Overview
The Import Objects option in theMainMenu can be used to import a .csv, .tsv or .txt file which defines a Fixture
Layout, Pixel Matrix, KiNET Power Supplies, Patch record, a .ptc or .dat file to import a TPC Interface or a .fap file to
import a Philips Color Kinetics VMTMap.

During Import, if the file import has errors, the file can be updated externally. If this is done, then a Reload File button
will become available.

- 299 -

Pharos Designer User Manual

Fixture

A Fixture Layout file should include the following required data:

l Number - a unique fixture number
l Manufacturer ID - themanufacturer number for the required fixture (can be found in the fixture configuration)
l Model ID - themodel number for the required fixture (can be found in the fixture configuration)

Note: These columns are required to import the fixture layout. X and Y position are required columns, but can be left
empty for fixtures. This will allow you to add the fixture to the project, but not the layout.

The following columns are optional, and if not provided, the default will be used.

l Name - A name for the fixture
l Comments - A comment about the fixture
l Mode ID - themode number for the required fixture (can be found in the fixture configuration)
l Width - the width of the fixture on the layout
l Height - the height of the fixture on the layout
l X - the x-position of the fixture on the layout
l Y - the y-position of the fixture on the layout
l Angle - the angle of the fixture on the layout, clockwise from vertical.

The following can be set for any columns to ignore them.

l Ignore - use if there is data in the text file which should be ignored

- 300 -

Fixture

Importing Fixtures With No Position

You can import a fixture without any position information. This will create the fixture within the project, but won't
place an instance of the fixture on a layout.

Note: The text file still requires X and Y columns to import.

Importing Custom Properties

If you have Custom Properties setup within your project, these can be imported by adding a column to your text file
containing this data. The Custom Property will be available in the Column Property drop down.

Example
The data below will import 7 Generic Conventional 8-Bit fixtures in a line

Number,Manufacturer ID,Model ID,X,Y
1,0,0,0,30
2,0,0,0,60
3,0,0,0,90
4,0,0,0,120
5,0,0,0,150
6,0,0,0,180
7,0,0,0,210

- 301 -

Pharos Designer User Manual

Pixel Matrix

A Pixel Matrix file should include the following required data:

l Number - the fixture number of the required fixture within the project
l X - the x coordinate within the pixel matrix
l Y - the y coordinate within the pixel matrix

The following columns are optional

l Angle - the angle of a compound fixture within the pixel matrix
l Ignore - columns within the file which can be ignored

Example
The data below will create a Pixel Matrix with fixtures 1-7 in a vertical line.

Number,X,Y
1,1,2
2,1,3
3,1,4
4,1,5
5,1,6
6,1,7
7,1,8

- 302 -

KiNET Power Supply

KiNET Power Supply

A KiNET power supply file should include the following required data:

l Controller Number - which controller the power supply is controlled by
l Power Supply Types*:

PDS_150e
PDS_500e
PDS_60 24V Ethernet
PDS_60_24V DMX/Ethernet
PDS_60ca 12V DMX/Ethernet
PDS_60ca 7.5V DMX/Ethernet
PDS_70mr 24V Ethernet
sPDS_60ca 24V DMX/Ethernet
sPDS_480ca 7.5V
sPDS_480ca 12V
sPDS_480ca 24V
Data Enabler Ethernet
iColor Accent (Data Enabler EO)
PDS_60ca 24V Ethernet

- 303 -

Pharos Designer User Manual

Data Enabler Pro
ColorBlaze TRX
Multi-Protocol Converter

Other types can be used to create custom power supplies

The following columns are optional, and if not set, will use a default value

l Name - A human readable name for the power supply
l IP Address - the IP address of the power supply
l Ports - The number of ports that this power supply has
l Number - The user number for this power supply
l Chromasic* - (Yes or No) -Whether the power supply is chromasic
l Protocol Version* - The KiNET version that the power supply uses.

* These can be used to import custom power supplies into the project

Example
The data below will import a two Data Enabler Pros at IP Address 10.0.0.1 and 10.0.0.2

Controller number, Type, Name, IP address, Port, Number
1,Data Enabler Pro,,10.0.0.1,1,1
1,Data Enabler Pro,,10.0.0.2,1,2

- 304 -

Patch

Patch

A patch record file should include the following required data:

l Fixture Number - the user number of the fixture
l Controller Number - the controller the fixture is patched to
l Protocol - the protocol to patch to
l Universe Number - The universe of the specified protocol to patch to. If using Art-Net, the universe can be set
in three part format (a/b/c = Net/Sub-Net/Universe)

l Channel - the channel to patch to

The following data is optional, depending on the protocol/fixture being used.

l Power Supply IP Address - The IP Address of the the KiNET power supply (if using KiNET)
l Port - the port on the KiNET power supply to patch to (if using KiNET)
l Patch point - the patch point of the fixture (if using a fixture with multiple patch points)
l sACN Priority
l RIO Device Number - the address of the RIO to patch to (if using RIO DMX)
l RIO device type - the type of the RIO to patch to (if using RIO DMX)

Example:
Fixture number,Controller number,Protocol,Universe number,Power supply IP
address,Power supply user number,Port,Channel,Patch point,sACN priority,sACN uni-
verse priority,RIO device number,RIO device type
1,1,DMX,1,,,,1,Fixture,,,,
2,1,DMX,1,,,,4,Fixture,,,,
3,1,DMX,1,,,,7,Fixture,,,,
4,1,DMX,1,,,,10,Fixture,,,,

- 305 -

Pharos Designer User Manual

5,1,DMX,1,,,,13,Fixture,,,,
6,1,DMX,2,,,,1,Fixture,,,,
7,1,DMX,2,,,,4,Fixture,,,,
8,1,DMX,2,,,,7,Fixture,,,,
9,1,DMX,2,,,,10,Fixture,,,,
10,1,DMX,2,,,,13,Fixture,,,,
11,1,Art-Net,0,,,,1,Fixture,,,,
12,1,Art-Net,0,,,,2,Fixture,,,,
13,1,Art-Net,0,,,,3,Fixture,,,,
14,1,Art-Net,0,,,,4,Fixture,,,,
15,1,Art-Net,0,,,,5,Fixture,,,,
16,1,Art-Net,0,,,,6,Fixture,,,,
17,1,Art-Net,0,,,,7,Fixture,,,,
18,1,Art-Net,0,,,,8,Fixture,,,,
19,1,Art-Net,0,,,,9,Fixture,,,,
20,1,Art-Net,0,,,,10,Fixture,,,,
21,1,KiNET,,10.1.2.3,1,1,1,Fixture,,,,
22,1,KiNET,,10.1.2.3,1,1,5,Fixture,,,,
23,1,KiNET,,10.1.2.3,1,1,9,Fixture,,,,
24,1,KiNET,,10.1.2.3,1,1,13,Fixture,,,,
25,1,KiNET,,10.1.2.3,1,1,17,Fixture,,,,
26,1,KiNET,,10.1.2.3,1,2,1,Fixture,,,,
27,1,KiNET,,10.1.2.3,1,2,5,Fixture,,,,
28,1,KiNET,,10.1.2.3,1,2,9,Fixture,,,,
29,1,KiNET,,10.1.2.3,1,2,13,Fixture,,,,
30,1,KiNET,,10.1.2.3,1,2,17,Fixture,,,,

- 306 -

TPC Interface

TPC Interface
You can import any TPC Interface that has been exported from Designer 2, as a .dat file or any TPC Interface
created using Interface Editor as a .ptc file.

The selected interface will be imported into Designer and added to the project.

You can then go to the InterfaceMode to edit it, and associate it with a controller in the project.

- 307 -

Pharos Designer User Manual

Philips Color Kinetics

A VMTmap from Philips Color Kinetics VideoManagement Tool 2 can be imported to bring the fixturemap and patch
into Designer.

Select Philips Color Kinetics from the Import Object Dialog and browse to your .fap file.

VMT layers can bemapped onto different Layouts in Designer, or flattened onto a single layer.

If you select a VLC Layout, the fixtures will be added to the associated VLC, otherwise, select the controller to patch
the fixtures to.

The fixtures in the VMT Mapwill be brought into Designer, mapped onto the selected layout/s and patched according
to the VMT file.

If the KiNET power supplies in the VMT project don't exist in Designer, and are of a known type, they will be added
to the project.

PDS_150e
PDS_500e
PDS_60 24V Ethernet
PDS_60_24V DMX/Ethernet
PDS_60ca 12V DMX/Ethernet
PDS_60ca 7.5V DMX/Ethernet
PDS_70mr 24V Ethernet
sPDS_60ca 24V DMX/Ethernet

- 308 -

Philips Color Kinetics

sPDS_480ca 7.5V
sPDS_480ca 12V
sPDS_480ca 24V
Data Enabler Ethernet
iColor Accent (Data Enabler EO)
PDS_60ca 24V Ethernet
Data Enabler Pro
ColorBlaze TRX
Multi-Protocol Converter

Note:Only original .fap files can be use, not exportedmap files

- 309 -

Pharos Designer User Manual

Export Object

The Export Object option in theMainMenu can be used to export a .csv file which defines a Fixture Layout, Pixel
Matrix, Patch Record or list of KiNET power supplies

When you export a text file, youmust specify which type of object it refers to.

Youmust then select which object you want to export, i.e. which Layout or Pixel matrix should be exported.

Finally, select the data fields that you want to output to the export file.

- 310 -

Preferences

Preferences

Select MainMenu > Preferences on themain toolbar to open the Preferences dialog:

System
Select the System tab to change the default behaviour of Designer:

Show New Project Wizard

Choose whether to display the New Project Wizard when a new project is created.

Number of backups to keep

Designer can keep a number old versions of the project file when you save and it is here that you set the number of
old files to keep. Before saving your project (Save Project or Ctrl+S), Designer will rename the project file on disk by
adding the current time and date to the file name, such as "my_project_bak_2007-04-18_15-58-09.pd2". If you
already have the specified number of backups, the oldest backup will be removed from the disk.

Use Save Project As to producemanual backups of the project at each important programmingmilestone.

Notify About Beta Releases

Choose whether to be notified when Pharos release a Beta version.

Note: You will always be notified when a stable version is released.

- 311 -

Pharos Designer User Manual

General

Parameter Control

Whichmodel do you want to use (8 bit = 0->255, Percent = 0->100%), this is a display option only. The editors within
Timeline and Scene with display levels in this format.

Layout

Snap to grid

Automatically snap the centre of a fixture to a grid intersection.

Snap to fixtures

When two fixtures are brought close together, the sides automatically align.

- 312 -

Preferences

Indicate locked fixtures

Display an icon when you try and drag a locked fixture icon on the Layout

Show rulers

Display a horizontal and vertical scale along the edges of the Layout to place fixture accurately.

Note: The above preferences are also available in the right-click context menu within the Layout view.

Show VLC fixture centres

Display a circle to indicate where the actual VLC fixture is. This is themmapped onto the relevant pixel.

Patch
Select the Patch tab to change the default settings for patching:

Patch Cells per row

The Patch Cells per row entry box lets you determine how many channels are displayed per row. This can be useful
for organising the display for complex fixtures; set this number to be amultiple of the number of channels a fixture
uses to get a neater, tabulated display.

Ignore delete universe warning

Choose whether to display a warning when a universe is deleted.

Ignore unpatch universe warning

Choose whether to display a warning when a whole universe is unpatched.

- 313 -

Pharos Designer User Manual

Ignore unpatch collision warning

Choose whether to have a warning displayed when patching collisions occur.

Ignore existing patch warning

Choose whether to display a warning when a fixture is patchedmultiple times.

Ignore clear universe on paste warning

Choose whether to display a warning when you paste a copied universe into a universe that already has fixtures
patched to it.

Ignore move universe warning

Choose whether to display a warning when a KiNET port is patched from a different controller to the rest of the power
supply.

Mapping

Ignore multiple instance warning

Choose whether to display a warning when a pixel matrix is created which includes multiple instances of one fixture.

Ignore no instances on layout warning

Choose whether to display a warning when attempting to create a pixel matrix with fixture that aren't on the current
layout.

Ignore additional VLC+ targets warning

Choose whether to display a warning when enabling Additional Targets on a VLC+.

- 314 -

Preferences

Search same folder for missing media

When you replacemissingmedia, Designer can search the same folder for other missingmedia clips.

Timeline
Select the Timeline tab to change the default settings for timelines:

These properties will be applied to any timelines created after the properties are changed, and can be overridden on a
per timeline basis.

Background Colour

The background colour of the timeline area of the Timeline window can be chosen here, press the button and select a
colour. This is useful to make certain types of programming stand out better, for example a project usingmainly
intensity presets may be clearer with a dark grey background.

Rubber Band Mode

This preference determines how presets should behave when using a rubber band to select them (dragging a box
around the presets with themouse). Overlap will select anything the box touches, whereas Encompass will select
only presets wholly enclosed by the box.

Default Timeline Properties

Specify the default length, fade and release times, see timeline properties.

Simulate
Select the Simulate tab to change the default settings for Simulate Mode:

- 315 -

Pharos Designer User Manual

Live Video Test Pattern

These settings allow you to specify the output when a live video input is not being received:

l Pattern - the pattern to display (Colour bars, vertical lines, horizontal lines, grid)
l Repeat - the number of times to repeat the pattern on the output (for colour bars)
l Size - the pixel size of the bar/grid
l Width - the width of the pattern
l Height - the height of the pattern

OpenCL Device

Use the dropdown to choose hardware (CPU or GPU) that supports OpenCL 1.2. This is only required for VLC
or VLC+ simulation.

Note: If None is selected, VLC or VLC+ simulation will not be available.

Network
Select the Network tab to change the default settings for networking:

- 316 -

Preferences

Close Upload Project After Upload All

Specify whether the Upload Project dialog box should be closed when Upload All has completed

Cloud Provider

Enter the provider to connect to when linking a project with a Cloud Site.

Network Proxy Settings

These Network Proxy settings should be configured when a Proxy server is in use between your computer and the
internet and/or your Pharos Controller/s.

- 317 -

Pharos Designer User Manual

Scripting Overview
There are two areas within Designer which utilise scripting, Triggers and Custom Presets.

These scripting environments are a powerful way to increase the functionality of a project beyond the capabilities of
the existing Trigger, Condition and Action logic and the standard timeline presets.

Before using scripting within you project, read through the appropriate scripting guide for an overview of the scripting
syntax and abilities.

Trigger script programming guide

Custom preset programming guide

There is also a Pharos specific extension to the standard Lua scripting language available which is described in Lua
API (Triggering)

- 318 -

Custom Preset ProgrammingGuide

Custom Preset Programming Guide
Custom Presets use a Lua script to define an effect that can be played back on aMatrix. You can use this to create
effects that are not available as standard in Designer. Custom Presets aremanaged using theMapping window.

Basics
Custom presets use Lua scripts to define an animation.

For each pixel (x,y) of each frame of that animation, a pixel function is called which returns three numbers,
between 0 and 255, which represent the red, green and blue components of the colour of that pixel. Pixel (0,0) is in
the top left of the frame, with the positive x axis pointing right and the positive y axis pointing down.

Here is themost simple example of a custom preset:

Listing 1

function pixel(frame,x,y)
return 255,0,0

end

This fills every pixel of every framewith red. If you do not return all three components of the pixel's colour, the
missing components are assumed to be 0, so the following function is equivalent to Listing 1:

Listing 2

function pixel(frame,x,y)
return 255

end

A Real Example
To demonstrate what can be achieved with custom presets, we are going to build up a real example as concepts are
introduced throughout this guide.

To start, we are going to create a preset that renders a series of vertical red bands:

Listing 3

-- width of the bands in pixels
band_width = 4
-- space between bands in pixels
band_spacing = 1
-- modulo operator (a%b)
function mod(a,b)

return a - math.floor(a/b)*b
end

-- the pixel function
function pixel(frame,x,y)

-- use the modulo operator to split the horizontal axis into bands and

- 319 -

Pharos Designer User Manual

-- decide if we are in the band or in the separator between bands
if (mod(x,band_width+band_spacing)<band_width) then

-- in band
return 255,0,0

else
-- in band separator
return 0,0,0

end
end

Youwill note that we have defined a new function, mod, to implement themodulo operator. This was done tomake
the script more readable. Wewill discuss user-defined functions again later.

We also defined two variables, band_width and band_spacing. These we placed outside of the pixel function
because they are the same for every pixel of every frame of the effect, so it is more efficient to not execute the
assignment for every pixel. Any code outside of the pixel function is executed once, before the pixel function is
called for the first time.

Animation
Filling every frame of an animation with a single colour is not very exciting, so we can use the frame argument to
change the colour of a given pixel (x,y) based on the current frame.

Here is an example:

Listing 4

function pixel(frame,x,y)
if (x<frame) then

return 255,0,0
else

return 0,0,0
end

end

This creates a red horizontal wipe, advancing 1 pixel towards the right for each frame. Youmay have noted that once
the wipe reaches the right side of the frame, the whole frame stays red for a period of time before the animation loops
back to the beginning. This is because the number of frames exceeded the number of pixels across the frame.

Ideally, we want our effects to loop seamlessly. To do this, we introduce three global variables that have been
already been defined for you:

l frames - the total number of frames in the animation
l width - the width of the animation in pixels
l height - the height of the animation in pixels

We can rewrite Listing 4 as follows:

Listing 5

function pixel(frame,x,y)

- 320 -

Custom Preset ProgrammingGuide

-- calculate the progress through the animation
local t = frame/frames
-- compare the fraction across the effect with the animation progress
if (x/width<t) then

return 255,0,0
else

return 0,0,0
end

end

Now, once the red wipe reaches the right side of the frame, it immediately jumps back to the start. Returning to our
vertical band example, we are going to introduce animation by changing the height of each band over time:

Listing 6

-- width of the bands in pixels
band_width = 4
-- space between bands in pixels
band_spacing = 1

-- get the combined width of band and separator
local total_band_width = band_width+band_spacing
-- get the number of visible bands
local bands = width/total_band_width

-- modulo operator (a%b)
function mod(a,b)

return a - math.floor(a/b)*b
end

-- the pixel function
function pixel(frame,x,y)

if (mod(x,total_band_width)>=band_width) then
-- in band separator
return 0,0,0

end

-- get the band in which this pixel falls
local band = math.floor(x/total_band_width)

-- get the fraction through the effect
local t = frame/frames

-- get the height of the band in which this pixel falls
local band_height = (math.sin((band/bands+t)*math.pi*2)+1)/2

-- adjust y to be relative to the center of the effect
y = y-(height/2)+0.5

-- decide if this pixel is inside the band
if (math.abs(y)/(height/2) <= band_height) then

return 255,0,0

- 321 -

Pharos Designer User Manual

else
return 0,0,0

end
end

Weare using a sine function to set the height of each band, where the argument to the sine function is offset based
on the index of the band and the current fraction through the effect. The result of this is that the height of each band
differs from its neighbour according the sine function, and this relationship is modified over time to create a ripple.

More Colours Than Just Red
So far, we have just been creating red effects, but there aremore colours than red, so why should we stick with that?
Wewill modify the vertical band example to show how different colours can be created. For this example, we
introduce the built-in function, hsi_to_rgb, which converts an HSI (hue, saturation, intensity) colour into an RGB
(red, green, blue) colour:

Listing 7

-- width of the bands in pixels
band_width = 4
-- space between bands in pixels
band_spacing = 1

-- get the combined width of band and separator
local total_band_width = band_width+band_spacing
-- get the number of visible bands
local bands = width/total_band_width

-- modulo operator (a%b)
function mod(a,b)

return a - math.floor(a/b)*b
end

-- rainbow lookup
function rainbow(hue)

return hsi_to_rgb(hue*math.pi*2,1,1)
end

-- the pixel function
function pixel(frame,x,y)

if (mod(x,total_band_width)>=band_width) then
-- in band separator
return 0,0,0

end

-- get the band in which this pixel falls
local band = math.floor(x/total_band_width)

-- get the fraction through the effect
local t = frame/frames

- 322 -

Custom Preset ProgrammingGuide

-- get the height of the band in which this pixel falls
local band_height = (math.sin((band/bands+t)*math.pi*2)+1)/2

-- adjust y to be relative to the center of the effect
y = y-(height/2)+0.5

-- decide if this pixel is inside the band
local h = math.abs(y)/(height/2)
if (h <= band_height) then

return rainbow(band/bands+t)
else

-- offset hue by quarter
return rainbow((band/bands+t)+0.25)

end
end

Wehave defined a new function, rainbow, which returns a fully saturated r,g,b value for a given hue. This function
is then called with different arguments depending on whether on not a pixel falls inside or outside of a band.

User-defined functions can be used whenever you want to use a similar piece of code inmultiple places with
differing arguments.

Running this script, you will see that the bands are now coloured with a rainbow which changes over time, and the
area above and below the band is filled with a colour that is pi/2 radians out of phase with the band's colour.

Working With Colours
Working with colours as 3 separate components can produce a wide variety of effects, but sometimes it is more
convenient to treat a colour as a single entity. We can do that with the colour library.

To create a variable of type colour, call colour.new(), passing in three values between 0 and 255 which represent
the red, green and blue components of the colour, i.e:

local c = colour.new(255,0,0)

The variable c has the type colour and represents red. Colours have three properties, red, green and blue, which
can be used to access and alter that colour. Here is a simple example using the colour type:

Listing 8

function pixel(frame,x,y)
local c = colour.new(255,0,0)
return c.red,c.green,c.blue

end

This fills every pixel of every framewith red.

Earlier in this document, we stated that the pixel function should return 3 numbers, representing the red, green and
blue components of a colour. This was not the entire truth. We are also allowed to return a single variable of type
colour. This function is therefore equivalent to Listing 8:

- 323 -

Pharos Designer User Manual

Listing 9

function pixel(frame,x,y)
local c = colour.new(255,0,0)
return c

end

Once again, we return to our vertical band example and use colour variables to specify the band colour and the
background colour:

Listing 10

-- width of the bands in pixels
band_width = 4
-- space between bands in pixels
band_spacing = 1
-- the colour of the band
band_colour = colour.new(255,0,0)
-- the colour of the space between bands
background_colour = colour.new(0,0,255)

-- get the combined width of band and separator
local total_band_width = band_width+band_spacing
-- get the number of visible bands
local bands = width/total_band_width

-- modulo operator (a%b)
function mod(a,b)

return a - math.floor(a/b)*b
end

-- the pixel function
function pixel(frame,x,y)

if (mod(x,total_band_width)>=band_width) then
-- in band separator
return background_colour

end

-- get the band in which this pixel falls
local band = math.floor(x/total_band_width)

-- get the fraction through the effect
local t = frame/frames

-- get the height of the band in which this pixel falls
local band_height = (math.sin((band/bands+t)*math.pi*2)+1)/4

-- adjust y to be relative to the center of the effect
y = y-(height/2)+0.5

-- decide if this pixel is inside the band
if (math.abs(y)/height<=band_height) then

- 324 -

Custom Preset ProgrammingGuide

return band_colour
else

return background_colour
end

end

Wehave added two variables, band_colour (red) and background_colour (blue) and are now returning those
values rather than the r,g,b values that we were using previously. You should now see red bands rippling over a blue
background.

A Simple Gradient
The colour library also includes an interpolate function, which takes two colours and a fraction and returns a
new colour that is linearly interpolated between the two colours. For example:

Listing 11

local red = colour.new(255,0,0)
local blue = colour.new(0,0,255)

function pixel(frame,x,y)
-- interpolate between red and blue using the horizontal displacement of x
-- note that we use (width-1) so the rightmost pixel is completely blue
return colour.interpolate(red,blue,x/(width-1))

end

This creates a horizontal red to blue gradient. We could have created the same gradient without the colour library as
follows:

Listing 12

function pixel(frame,x,y)
local f = x/(width-1)
return 255*(1-f),0,(255*f)

end

However, if you changed your mind about the colours that you wanted for your gradient, it would be significantly
harder to alter Listing 12 than it would be to change the colours in the first two lines of Listing 11.

Working With Gradients
The gradient library adds support for more complicated gradients that cannot be achieved by interpolating between
two colours.

To create a new variable of type gradient, call gradient.new(), passing in two colours, i.e:

local c1 = colour.new(255,0,0)
local c2 = colour.new(0,0,255)
local g = gradient.new(c1, c2)

To find the colour of the gradient at a specific point, use the lookup function, passing in a number between 0 and 1.
For example:

- 325 -

Pharos Designer User Manual

Listing 13

local red = colour.new(255,0,0)
local blue = colour.new(0,0,255)
local g = gradient.new(red, blue)

function pixel(frame,x,y)
-- note the use of the colon operator
return g:lookup(x/(width-1))

end

This creates a horizontal gradient from red to blue, but we have already seen that there are other ways to generate
the same result which will probably bemore efficient. To show where the gradient library offers more power:

Listing 14

local red = colour.new(255,0,0)
local blue = colour.new(0,0,255)
local g = gradient.new(red,blue)

-- add a third point to the middle of the gradient
local green = colour.new(0,255,0)
g:add_point(0.5,green)

function pixel(frame,x,y)
return g:lookup(x/(width-1))

end

Weused the add_point function to insert a green colour midway between the red and the blue colours. This
generates a horizontal gradient that fades from red to green to blue.

Back to the vertical band example, we will use a gradient to colour the bands:

Listing 15

-- width of the bands in pixels
band_width = 4
-- space between bands in pixels
band_spacing = 1
-- the colour of the band
band_gradient = gradient.new(colour.new(255,0,0), colour.new(255,255,0))
-- the colour of the space between bands
background_colour = colour.new(0,0,0)

-- get the combined width of band and separator
local total_band_width = band_width+band_spacing
-- get the number of visible bands
local bands = width/total_band_width

-- modulo operator (a%b)
function mod(a,b)

- 326 -

Custom Preset ProgrammingGuide

return a - math.floor(a/b)*b
end

-- the pixel function
function pixel(frame,x,y)

if (mod(x,total_band_width)>=band_width) then
-- in band separator
return background_colour

end

-- get the band in which this pixel falls
local band = math.floor(x/total_band_width)

-- get the fraction through the effect
local t = frame/frames

-- get the height of the band in which this pixel falls
local band_height = (math.sin((band/bands+t)*math.pi*2)+1)/2

-- adjust y to be relative to the center of the effect
y = y-(height/2)+0.5

-- decide if this pixel is inside the band
local h = math.abs(y)/(height/2)
if (h<=band_height) then

return band_gradient:lookup(h)
else

return background_colour
end

end

The band_gradient variable is initialised as a red to yellow gradient, and we use band_gradient:lookup(h)
to determine the colour of the band at height h.

Working With Properties
Custom presets can have properties which will be exposed in Designer whenever the preset is placed on a timeline.
This allows a single custom preset to create a wide variety of effects. It alsomeans that you do not have to create
near-identical copies of custom presets just to change one parameter, for example, a colour. You can just expose a
colour property and specify the desired colour when the preset is placed on a timeline.

To define a property, you would call the function:

property(name, type, default_value, ...)

This must be added to your script outside of any function call.

name is a string andmust be unique within a custom preset andmust not contain spaces. This namewill be used as
the name of a global variable that is available in your script, whose value will depend on what has been set for a
given instance of your custom preset.

type is the type of the property. It can be one of the following values: BOOLEAN, INTEGER, FLOAT, COLOUR and
GRADIENT. This determines what sort of control is presented to the user when placing a custom preset on a
timeline.

- 327 -

Pharos Designer User Manual

default_value is the initial value of a property when first added to a timeline. The value passed in here depends
on the type of the property, and this is outlined below.

Certain types of properties also allow some addition arguments to be specified, and these will also be described for
each type below:

Boolean Properties

property("invert", BOOLEAN, true)

The default value should be true or false.

Integer Properties

property("count", INTEGER, number, [min], [max], [step])

The default value should be a number between min and max.

l min is theminimum allowed value (default: -2147483648)
l max is themaximum allowed value (default: 2147483647)
l step is the difference between allowed values (default: 1)

min, max and step are optional.

Float Properties

property("count", FLOAT, number, [min], [max], [resolution])

The default value should be a number between min and max.

l min is theminimum allowed value
l max is themaximum allowed value
l resolution is the number of decimal places to display (default: 2)

min, max and resolution are optional.

Colour Properties

property("background", COLOUR, red, green, blue)

red, green and blue are the default values of the components of the colour.

Gradient Properties

property("Gradient", GRADIENT, {fraction, red, green, blue}, ...)

The default value of a gradient is a list of fractions and colours, where fraction is in the range [0-1] and specifies
where in the gradient the colour is, and red, green and blue is the colour at that position and are in the range [0-
255]. You can specify multiple points. For example:

property("Gradient", GRADIENT, 0.0, 255, 0, 0, 1.0, 0, 0, 255)

creates a red (255,0,0) point at the start (0.0) and a blue ((0,0,255) point at the end (1.0).

To demonstrate a real example of using properties in scripts:

- 328 -

Custom Preset ProgrammingGuide

Listing 16

property("g", GRADIENT, 0.0, 255, 0, 0, 1.0, 0, 0, 255)

function pixel(frame,x,y)
return g:lookup(x/(width-1))

end

This, by default, creates a horizontal gradient from red to blue, as we saw in Listing 13. However, when this preset is
placed on a timeline, there will be a gradient editor available, and you will be able to alter the gradient to be any colour
you wish, without having to recompile the script or having to duplicate the custom preset with some small
alterations.

Wewill now modify our vertical band example to expose some properties tomake a very versatile effect:

Listing 17

-- width of the bands in pixels
property("band_width", INTEGER, 4, 1)
-- space between bands in pixels
property("band_spacing", INTEGER, 1, 0)
-- the wavelength of the ripple (in terms of current width)
property("wavelength", FLOAT, 1, 0, 16, 2)
-- the direction of the ripple
property("reverse", BOOLEAN, false)
-- the colour of the band
property("band_gradient", GRADIENT, 0, 255, 0, 0, 1, 255, 255, 0)
-- the colour of the space between bands
property("background_colour", COLOUR, 0, 0, 0)

-- get the combined width of band and separator
local total_band_width = band_width+band_spacing
-- get the number of visible bands
local bands = width/total_band_width

-- modulo operator (a%b)
function mod(a,b)

return a - math.floor(a/b)*b
end

-- the pixel function
function pixel(frame,x,y)

if (mod(x,total_band_width)>=band_width) then
-- in band separator
return background_colour

end

-- get the band in which this pixel falls
local band = math.floor(x/total_band_width)

- 329 -

Pharos Designer User Manual

-- get the fraction through the effect
local t = frame/frames

-- optionally reverse the ripple
if (reverse) then t = -t end

-- get the height of the band in which this pixel falls
local band_height = (math.sin((band/bands/wavelength+t)*math.pi*2)+1)/2

-- adjust y to be relative to the center of the effect
y = y-(height/2)+0.5

-- decide if this pixel is inside the band
local h = math.abs(y)/(height/2)
if (h<=band_height) then

return band_gradient:lookup(h)
else

return background_colour
end

end

Youwill notice that adding properties to the example involved little more than changing the variable definitions at the
start of the script. There are also two new properties, wavelength, for setting the wavelength of the ripple, and
reverse, for changing the direction of the ripple.

By adjusting the values of the properties, we can now create a variety of different effects without having to alter the
script again.

Colour Library Summary
colour.new(r,g,b)

Returns a new colour that represents the RGB color specified by the components r, g and b. r, g and b will be
limited to the range [0,255].

colour.interpolate(c1,c2,f)

Returns the colour that is linearly interpolated between colour c1 and colour c2 at fraction f. f can fall outside of the
range [0,1] and the returned colour will be extrapolated accordingly.

Properties

c.red

The value of the red component [0-255] of colour c.

c.green

The value of the green component [0-255] of colour c.

c.blue

The value of the blue component [0-255] of colour c.

- 330 -

Custom Preset ProgrammingGuide

Gradient Library Summary
gradient.new(c1,c2)

Returns a new gradient with colour c1 at the start and colour c2 at the end.

Functions

g:lookup(f)

Returns the colour at fraction f through the gradient g. f will be limited to the range [0,1].

g:add_point(f, c)

Adds the colour c to the gradient g at fraction f.

Built-in Functions
dist(x1,y1,x2,y2)

Returns the distance between coordinate (x1,y1) and coordinate (x2,y2)

dist_from_center(x,y)

Returns the distance between coordinate (x,y) and the center of the frame. This is not the same as calling dist
(x,y,width/2,height/2). It takes into account the fact that the center of the framemay fall in themiddle of a
pixel. For example, if width and height were equal to 5, the center of the frame is the center of the pixel at
coordinate (2,2), but calling dist(2,2,width/2,height/2) will return 0.707, which is the distance between the
top left of pixel (2,2) and its center. Calling dist_from_center(2,2), where width and height are equal to 5,
will return 0.

print(message)

Prints message in the debugger's Output window.

You are advised to remove calls to this function when you have finished debugging because it will allow the script to
run faster when used in programming.

rgb_to_hsi(red,green,blue)

Converts an RGB (red, green, blue) colour to an HSI (hue, saturation, intensity) colour. red, green and blue are in
the range [0-255]. Returns three numbers, hue is in [0-2PI] radian, saturation and intensity are in the range [0-1].

hsi_to_rgb(hue,saturation,intensity)

Converts an HSI (hue, saturation, intensity) colour into an RGB (red, green, blue) colour. hue is in [0-2PI] radians,
saturation and intensity are in the range [0-1]. Returns three numbers in the range [0-255].

- 331 -

Pharos Designer User Manual

Custom Preset Scripting Examples

Matrix

The green randomly scrolling bars from theMatrix film.

Show Code

-- seed for the random number generator

property("seed", INTEGER, 0, 0)

-- initialise the random number generator

math.randomseed(seed)

-- generate a random period,active,offset value for each column of the effect

table = {}

local i = 0

while (i < width) do

table[i] = { math.random(1, 3), math.random(4, 10)/10, math.random() }

i = i+1

end

-- ramp-down effect curve lookup

function ramp_down(f,period,active,offset)

f = f/period

f = f+offset

f = f-math.floor(f)

if (f>active) then return 0 else return f/active end

end

-- the pixel function

function pixel(frame, x, y)

local t = frame/frames

local period = table[x][1]

local active = table[x][2]

local offset = table[x][3]

local f = ramp_down(y/height,period,active,1-t+offset)

- 332 -

Custom Preset Scripting Examples

return 0,255*f,0

end

Colour Rain

Similar to Matrix, but the random bars fade between two colours as they
drop, also the direction can be set.

Show Code

-- seed for the random number generator

property("seed", INTEGER, 0, 0)

property("gradient", GRADIENT, 0.0, 255, 128, 0, 0.5, 255, 255, 255, 1.0, 0,
192, 255)

property("reverse", BOOLEAN, false)

property("rotate", BOOLEAN, false)

-- initialise the random number generator

math.randomseed(seed)

-- generate a random period,active,offset value for each column of the effect

table = {}

local i = 0

local dimension = width

if (rotate) then

dimension = height

end

while (i < dimension) do

table[i] = { math.random(1, 3), math.random(4, 10)/10, math.random() }

i = i+1

end

-- ramp-down effect curve lookup

function ramp_down(f,period,active,offset)

f = f/period

f = f+offset

f = f-math.floor(f)

- 333 -

Pharos Designer User Manual

if (f>active) then

return 0

else

return f/active

end

end

-- the pixel function

function pixel(frame, x, y)

local t = frame/frames

local col = x

local row = y

local rowWidth = width

local colHeight = height

if (rotate) then

col = y

row = x

rowWidth = height

colHeight = width

end

if (reverse) then

col = rowWidth - col - 1

row = colHeight - row - 1

end

local period = table[col][1]

local active = table[col][2]

local offset = table[col][3]

local f = ramp_down(row/height,period,active,1-t+offset)

local c = gradient:lookup(row / colHeight)

return colour.new(c.red * f, c.green * f, c.blue * f)

end

- 334 -

Custom Preset Scripting Examples

Plasma

Generates a classic plasma effect.

Show Code

-- return a multi-frequency noise value

function plasma(x, y, x_period, y_period)

local cx = width/2-0.5

local cy = height/2-0.5

return (math.cos(((cx-x)/x_period)*math.pi*2)+

math.cos(((cy-y)/y_period)*math.pi*2))/2

end

-- return a colour for a given noise value

function colour(f)

return (math.sin(f*math.pi*4)+1)/2*255,(math.sin(f*math.pi)+1)/2*255,0

end

-- the pixel function

function pixel(frame, x, y)

-- calculate a noise value

local f = plasma(x,y,width,height)

-- offset the noise to animate the effect

local offset = frame/frames*2

-- lookup the colour for the noise value

return colour(f+offset)

end

More Examples

More examples are available on our website.

- 335 -

https://www.pharoscontrols.com/downloads/resources/custom-presets/

Pharos Designer User Manual

Trigger Script Programming Guide
Introduction
The Pharos Controllers offer many useful show control capabilities. Frequently it is the ability to cope with the
particular show control needs of a project that is the critical factor in selecting a control system.

Show control broadly consists of two tasks. First we need to be able to interface with other devices, whichmay
either be triggering us or be under our control. The Pharos Controller supports most of the core interfaces typically
used for show control, either directly on the unit (contact closures, RS232, MIDI, TCP/UDP, time and date) or
Remote Devices. Within the Triggers screen of the Designer software we can configure the Controller to detect
particular triggers and how to respond to them.

Second we need to be able tomake decisions. These could be simple choices between two alternatives - perhaps a
contact closure needs to trigger a different timeline depending on whether it is during the day or during the night.
Within the Triggers screen we support a range of conditions that can be used to quickly implement this sort of logical
decisionmaking. We also provide a facility to treat values received on an input as a variable that can be used to alter
the behaviour of actions - such as using a number received via RS232 to select a particular timeline.

The standard capabilities offered in the Triggers screen are extensive, but a good show control system has the
ability to cope with situations that are anything but standard. Within the Pharos system when things get non-
standard then we can use scripting.

Lua is a simple programming language that allows users to extend the functionality of the Pharos system
themselves. We use a freely available programming language called Lua. Anyone who has ever worked with a
programming language will find all the typical tools are available, and it should be straightforward to pick up for those
who have not. On top of the core Lua syntax we have added some dedicated Pharos functions that allow scripts to
work directly with the capabilities of a Controller.

Not every problem requires script, but there are few show control problems that can't be solved using script where
necessary. A few examples of situations where youmight want to use script include:

l Making a single contact closure start a different timeline each time
l Make a timeline loop a set number of times and then release
l Track motion sensor activity over a period of time
l Inverting a DMX input before it is used with a Set Intensity action
l Interpreting data from awind direction sensor
l Using a table of times for high and low tide to control bridge lighting
l Implementing an interactive game for a sciencemuseum

Wewill use some of the situations as examples below.

The Basics
There are a few basic things you need to know straight away. If any of them are not immediately clear then don't
worry - there are lots of examples of how to apply them in the following section.

Lua scripts are written as simple text files using any text editor. It is standard practice to use a .lua filename
extension though this is not required. These text files can be loaded directly into the Script Editor within Designer.

- 336 -

Trigger Script ProgrammingGuide

Comments

It is good practice to include readable comments in your scripts so that you (or anyone else) will be able to easily tell
what you were aiming to achieve. In Lua everything after two dashes on a line is treated as a comment.

-- This is a comment
This = is + not - a * comment -- but this is!

The whole point of comments is that they have no effect on the behaviour of the script. But I am introducing them
first so that I can use them within the examples that follow.

Variables

If you want to store a piece of data - whether it is a number (referred to as an integer, float or real), some text (referred
to as a string) or just true or false (refer to as a boolean)- then you use a variable. You create a variable simply by
giving it a name and using it in your script. A variable can store any type of data just by assigning it.

firstVariable = 10 -- assign a number
anotherVariable = "Some text" -- assign a string

When you next use these names then they will have the values that you assigned to them:

nextVariable = firstVariable + 5 -- value of nextVariable will be 15

Note that names are case-sensitive (i.e. capitals matter!), and once you have named a variable once then any time
you use the same name you will be referring to the same variable - in programming terms it is global. This even
applies across different scripts - so you can assign a number to a variable called bob in one script and then use the
number in another script by referencing bob.

One of themost common errors when writing scripts is trying to use a named variable before it has been assigned a
value - this will result in an error when the script is run. It is also very easy to use the same name in two different
places and not realise that you are actually reusing a single variable. (There is a way of dealing with this for names
you want to reuse that we will touch on later.)

Arithmetic

Scripts will often need to do some arithmetic - even if it is something very basic like keeping a counter of how many
times it is run:

myCount = myCount + 1

All of the standard arithmetic operations are available. There is also a library of mathematical functions available
should it be required, which includes things like random number generators.

Flow Of Control

In most scripts there will be one or more points where you want to make choices. Lua provides four useful structures
for this. Themost common is if, where you can choose which path to take through the script by performing tests.

if myNumber < 5 then -- tests whether myNumber is less than 5

- 337 -

http://www.lua.org/manual/5.3/manual.html#pdf-math

Pharos Designer User Manual

-- first choice
elseif myNumber < 15 and myNumber > 10 then

-- second choice
else

-- third choice
end

The other control structures all involve blocks of script that need to be repeated a certain number of times. Themost
straightforward is the while loop, which will repeat the enclosed block of script as long as the test at the start is
true:

myNumber = 10
while myNumber > 0 do

-- some useful script
myNumber = myNumber - 1 -- myNumber counts down

end

The repeat until loop is really exactly the same, but here the test is done at the end of each loop and it will
repeat while the test is false.

myNumber = 1
maxNumber = 4096
repeat

-- some useful script
myNumber = myNumber * 2

until myNumber == maxNumber

Here it is worth noting the use of two equal signs == to mean 'is equal to' in a test. This is different from a single
equal sign, which is used for assigning values. It is another very commonmistake to assign a value when youmeant
to test if it was equal, and it can be hard to spot because it is valid syntax that will not generate an error. The opposite
of ==meaning 'is equal to' is ~=meaning 'is not equal to'.

The other control structure is the for loop, which has a number of powerful options beyond the scope of what we
need here. But it is worth seeing how it can be used to do basic loops in a slightly neater way:

for i = 1,10 do
-- some useful script where i has value 1 to 10
-- i increments at the end of each loop

end

A final word of caution regarding loops: be careful that you do not write a loop that will never exit! This is all too easy
to do by forgetting to increment a counter value that you are using in the test for the loop. If your script has one of
these 'infinite loops' then the Controller will get stuck when it runs the script and be reset by the watchdog feature
(provided this is enabled). Make sure you test your scripts carefully before leaving them to run.

Tables

Often you will need to store a set of values within a script - thesemight be a list of timeline numbers or the current
states of all the contact closure inputs. Lua allows us to storemultiple values within a single named variable and this
is called a Table.

A table has to be created before it can be used:

- 338 -

Trigger Script ProgrammingGuide

firstTable = {} -- creates an empty table
secondTable = { 5,3,9,7 } -- a table with 4 entries

You can then access entries within the table by indexing into it - signified by square brackets. The number within the
square brackets identified which entry within the table you want to use or modify.

x = secondTable[3] -- x now equals 9 (3rd entry)
firstTable[1] = 5 -- entry 1 now has value 5
firstTable[7] = 3 -- entry 7 now has value 3
x = firstTable[1] + firstTable[7] -- x now equals 5 + 3

Note that we are allowed to assign values to entries within the table without doing anything special to change the
size of the table. We can keep adding elements to the table as needed and Lua will take care of it for us. This makes
it possible to write scripts using tables that will work regardless of how many entries there are in the table (e.g. a list
of 4 timeline numbers or of 40).

Tables are particularly powerful when used together with the loops we looked at in the previous section. For example
if I have a table of numbers and I wanted to find the smallest then I could use the following script:

numbers = { 71,93,22,45,16,33,84 }

smallest = numbers[1] -- initialise with the first value
i = 1 -- use to count loops
while numbers[i] do -- loop while numbers[i] exists

if numbers[i] < smallest then
smallest = numbers[i]

end
i = i+1

end

This is our first really functional piece of script and there are a couple of things worth noting.

l The first entry in a table is accessed using the number one (i.e. myTable[1]). This may seem obvious - but
some other programming languages start counting from zero.

l As we increment the variable i each time around the loop this means wewill be looking at a different entry in
the table each time around. The test at the start of my while loop is written to work regardless of how many
entries there are in the table. When you use a table entry in a test like this then it will be true as long as the
entry has some value (even if the value is zero) and false if there is no value there at all.

Functions

Within script there are a whole range of pre-defined operations that you can call when writing your own scripts. Some
of these are provided by the Lua language and are fully described in its documentation. Others have been provided
by Pharos to allow you to interact with the Controller from script and are fully described in themanual. They are all
called functions and accessed using a similar syntax. For example:

x = math.random(1,100)

This will assign variable x a value that is a random number between 1 and 100. The function math.random() is a
standard function provided by Lua and we can control its behaviour by passing in an argument - in this case the
values 1 and 100 to tell it the range within which wewant our random number to fall.

t = 5

- 339 -

Pharos Designer User Manual

get_timeline(t):start()

get_timeline(num):start() is one of the functions provided by Pharos and it will start the timeline with the
number passed in as an argument.

It is also possible to define your own functions as part of script. Youmight do this if there is a block of script that you
know you will need to reuse in a lot of different places. It will bemuch easier to write the script in one place and then
call it from wherever you need it.

function diff(a, b)
if a > b then

return a - b
else

return b - a
end

end

v1 = 10
v2 = 6
v3 = diff(v1,v2) -- v3 == 4

Note that the script containing the function definitionmust have been run before we try to call the function. It is often
useful to have a script that is run by the Controller startup trigger which defines your functions and creates any tables
- other scripts that are run by triggers canmake use of those functions and tables.

More Information
In this document we have only covered the basic concepts that are needed to understand or write useful scripts for
the Controllers. For more extensive information on the Lua language there are two documents, both of which are
available online at http://www.lua.org or can be bought as books from Amazon.

l Lua 5.3 ReferenceManual
l Programming in Lua

- 340 -

http://www.lua.org/

Lua API (Triggering)

Lua API (Triggering)
Weuse a scripting language called Lua, which has been extended to provide functionality specific to the Pharos
Controllers. Tutorials and referencemanuals for the Lua language can be found at www.lua.org. Wewill not attempt
to document the Lua language here, but just the Pharos specific extensions. Please contact support if you need
assistance with preparing a script or if you would like some examples as a starting point.

Lua Script Editor
The Lua Script Editor allows you to edit scripts from Triggers, Conditions and Actions within Designer. The Script
Editor is launched by pressing the Scripts & Modules button on the Trigger Toolbar, and selecting Scripts in the
bottom pane:

Themain area of the editor is the code editor where you enter the source code of the script. The code editor will
colour the Lua syntax to aid readability. Standard clipboard shortcuts and undo/redo are supported.

To create a new script for use in Conditions or Actions click New Script.

Scripts can be opened using the Open option and closed with the on the Script Tab.

To import a Lua script from an external file, use Import.

To save a Lua script to a file, use Export.

To compile the script and check for syntax errors, use Build. If there are errors in the script, they will be displayed at
the bottom of the window.

Changes to scripts are saved automatically.

Find

Pressing Ctrl(Cmd) + F will open the find bar in the script editor.

This allows you to search for text within your script.

Aa If selected, the casemust match
|Abc| If selected, the whole wordmust match
.* If selected, Regular Expressions can be used in the search box

- 341 -

http://www.lua.org/

Pharos Designer User Manual

Pharos Trigger Scripts
Syntax
Where a function returns anObject (e.g. get_timeline(num)) additional functions and variables become available. To
access a function, add a colon (:) between the functions:

get_timeline(1):start() – This will get the timeline object for timeline 1 and
apply the start function to it (starting timeline 1)

To access a variable, add a period (.) between the function and the variable:

get_timeline(1).is_running – This will return a boolean value indicating
whether timeline 1 is running

Pharos Lua API
This is documented along with the rest of the API here.

- 342 -

Scripting Examples

Scripting Examples
In this section wewill go through a number of practical examples of how scripts can be used with a Controller. These
examples are all based on real projects that are installed and working. They do get progressively more involved, so
do not worry if you don't follow the later ones - you will still be able to use script successfully to solvemany
problems.

Conditions
Running A Trigger 50% Of The Time

The script below can be used to only run the trigger 50% of the time randomly

-- returns true randomly, 50% of the time

return math.random(1,2) == 1

Actions
Cycling Through Different Timelines

Weare installing a wall of RGB LED fixtures in a children's play area. There is a single large button that the kids are
supposed to press. Each time they press it they should get a different colour or effect on the wall.

Each colour or effect would be programmed as a different timeline in Designer. The button will connect to a contact
closure and so wewill have a single Digital Input trigger. Rather than starting a timeline directly we will instead run
the following script:

-- which timelines should we cycle through?
timeline = { 22, 14, 24, 16, 15, 17, 21 }

-- on first time of running, initialise index
if not index then

index = 1
end

-- start the timeline whose number is at entry 'index'

get_timeline(timeline[index]):start()

-- increment index
index = index + 1

-- should we go back to the beginning of the table?
if index > #timeline then -- #timeline returns the number of values in the
table

index = 1
end

How would this change if we wanted each button press to choose a timeline at random rather than cycling through
them in order?

- 343 -

Pharos Designer User Manual

-- which timelines should we cycle through?
timeline = { 22, 14, 24, 16, 15, 17, 21 }

-- use the random function to set index
index = math.random(1,#timeline)

-- start the timeline whose number is at entry 'index'
get_timeline(timeline[index]):start()

Of course if the timeline selection is truly random then it will sometimes select the same timeline twice in a row. If
we wanted to prevent this from happening how could we do it?

-- which timelines should we cycle through?
timeline = { 22, 14, 24, 16, 15, 17, 21 }

-- find an index different from the old one
while index == oldIndex do

-- use the random function to set index
index = math.random(1,#timeline)

end

-- store the index for next time round
oldIndex = index

-- start the timeline whose number is at entry 'index'
get_timeline(timeline[index]):start()

Stopping A Range Of Timelines

Weneed to stop a large number of timelines in one go, but not all of them.

You can use up to 32 Actions on a Trigger, so if you need to stopmore than 32 Timelines at once, you will need to
use a script.

You can stop a single timeline from a script with the following:

get_timeline(1):stop()

This allows you to stop a single timeline from a script, but if you have a large number to stop, adding this for each
timeline is a lot of work.

A FOR loop can be used to reduce the amount of scripting required.

for i=1,10 do -- run through the values 1-10
get_timeline(i):stop() -- Stop the timeline defined by i

end

This script can be used to run through from 1 to 10 (or a different range by changing the values), and will stop the
timeline with those numbers. Tomake this more useful, you can put it in a function which allows you to call it with
any range of timeline numbers.

function stop_range(a, b) -- this defines the script as a function with two
variables (a and b)

- 344 -

Scripting Examples

for i=a,b do -- a FOR loop which runs through from a to b
get_timeline(i):stop() -- stop the timeline defined by i

end
end

stop_range(1,10) -- call the function with the variables 1 and 10

Note: It is generally best practice to define the function in a script that is run at startup, and then call the function
when it is needed

Make A Timeline Loop N Times

The designer has requested that a particular timeline runs once at sunset on aMonday, but twice at sunset on a
Tuesday, three times at sunset onWednesday, etc. He is planning to keep changing the timeline so does not want
to have lots of copies.

There are actually lots of perfectly reasonable ways to solve this using script. Let's assumewe have a single
astronomical clock trigger that fires at sunset and runs the following script:

N = time.get_current_time().weekday -- 1 is Monday, 7 is Sunday

get_timeline(1):start()

The timeline would be set to loop when it was programmed. We also put a flag on the timeline at the end andmake a
flag trigger that runs a second script:

-- decrement N
N = N - 1

if N == 0 then
-- release timeline 1 in time 5s
get_timeline(1):stop(5)

end

Note how this works by setting the value of the variable N in one script and then using that variable in another script,
which is often a useful technique.

We have used two scripts here, but it is possible to do the same job using only one.

In this case you would have the sunset trigger start the timeline directly and use the following script on the flag
trigger:

-- is this the first time round?
if not N or N == 0 then

N = time.get_current_time().weekday -- 1 is Monday, 7 is Sunday
end

-- decrement N
N = N - 1

if N == 0 then
enqueue_trigger(2) -- runs action on trigger 2

end

- 345 -

Pharos Designer User Manual

The trick here is to detect whether it is the first time round the loop - if the Controller has started up today then N will
have no value and so not N will be true, otherwise N will have been left with the value zero when the script ran
yesterday. When we detect it is the first time then we set its initial value in the sameway as before.

We have also used a different method to do the timeline release. Rather than calling get_timeline(num):stop
() directly from the script we are causing Trigger number 2 to fire. We can then configure Trigger number 2 to have
an Action that releases the correct timeline. It is sometimes easier to write scripts like this, as it can be easier to see
where to change properties. In this case all the you need to do is to modify the Start and Release Timeline Actions in
the Trigger list if you want to change which timeline is run.

Storing Data To The Memory Card

In the event that a controller reboots, we want it to start running the timeline that was running prior to the reboot.

The Lua library contains functions that make it possible to read and write files to the device the Lua is running on.
This includes reading and writing files on the Controller's Memory Card.

running = 1

This variable will be used to store the number of the timeline that was startedmost recently, using a Timeline Started
Trigger (set to Any) with a Run Script action as below:

running = get_trigger_variable(1)

Storing data on thememory card involves two steps, writing to the card and reading back from the card.

function writeToCard() -- Write the running timelines table to the memory card
file = io.open(get_resource_path("timeline.txt"), "w+") -- Open or create a

file (in write mode) called timeline.txt
if (file ~= nil) then -- Ensure the file has been opened

io.output(file) -- Set the open file as the default output location for the
io library

io.write("running = " .. running) -- Write the line "running = [value]" to
the file. The value will be the value of the variable

io.flush() -- Clear the output buffer
io.close() -- Close the file

end
end

Whenever the function writeToCard is called it will store the current value of the variable running to thememory card
in a file called timeline.txt. The file will be in the format:

running = [value]

This is the syntax for defining a variable in Lua andmeans that if we run the file on startup, it will set the variable
running to be the value stored in the file (with no parsing required)

function readFromCard() -- Read the stored running timelines table and start
the timelines specified

file = io.open(get_resource_path("timeline.txt"),"r") -- Open the file
timeline.txt (in read mode) if it exists

if file ~= nil then -- Ensure the file has been opened

- 346 -

Scripting Examples

dofile(get_resource_path("timeline.txt")) -- Run the file to set the variable
end
get_timeline(running):start() -- Start the timeline stored in the running

variable
end

Whenever the function readFromCard is run, it will find the file called timeline.txt, run it so that the stored variable is
set on the controller and then start the relevant timeline

Note: Functions should be placed in a Run Script action at Startup to ensure they are declared. They can then be
used at any time within the show file.

Push Data To The Web Interface

If you are using a CustomWeb Interface, it is possible to push data to it from the project file e.g. when a TPC Slider
is moved. You will then need to set up some JavaScript within your custom web interface to read the data in.

If we want to send the level of a TPC slider to the web interface, we would use a Touch Slider Move Trigger set to
match the Slider's Key. This would have a Run Script Action attached with the following Lua Script

level = get_trigger_variable(1) -- Capture the level set on the slider

push_to_web("slider_level",level) -- creates a JSON packet in the form {slider_
level:level}, where level is the value stored previously

Then within the web interface, we need to use the subscribe_lua() function to process this data.

Implementing An Interactive Game For A Science Museum

In an exhibit children are posed questions and have to select answers from an array of numbered buttons. The
buttons are large with RGB backlights that are controlled by a Controller to highlight choices and indicate right and
wrong answers. Questions are displayed by a slide projector which is under RS232 control from the Controller. The
buttons are wired to contact closures on the Controller and on RIOs, so that the Controller can check answers and
determine the progress of the game accordingly. The lighting in the rest of the room is designed tomimic a popular
TV quiz show to retain the children's interest, with different timelines for each stage of the game.

I am not going to work through this example - but the key point is that it should now be clear to you that a Controller
could be used to implement this sort of advanced interactive exhibit with the use of script. Try breaking down the
problem into discrete parts and you will find that no individual part of this is difficult - although getting it all to function
together reliably would no doubt require a lot of work. The Controller is a viable alternative to custom software
running on a PC and has clear advantages in terms of durability and cost.

Examples

Some Trigger Scripting examples are available on our website.

- 347 -

http://www.pharoscontrols.com/downloads/resources/script-examples/

Pharos Designer User Manual

Variants
Introduction
Within Lua Scripting (as with other scripting languages) it is possible to store data within a named location (variable).

Lua typically doesn’t differentiate between the contents of a variable (unlike some programming languages) and the
type (integer, string, boolean) of the variable can change at any time.

Pharos has added an object to the scripting environment called a Variant, which can be used to contain the data with
an assignment as to the type of data that is contained. This means that a single Variant can be utilised and handled
differently depending on the data that is contained and how it is being used.

Usage
Variant(value, range)

Defining a Variant
Within your Lua script you can create a Variant with the following syntax:

var = Variant() -- where var is the name of the variant.

Variant Types

Integer

An integer variant can be used to store a whole number

var = Variant() -- where var is the name of the variant.

var.integer = 123 -- Set var to an integer value of 123

log(var.integer) -- get the integer value stored in var

log(var.real) -- get the integer value stored in var and convert it to a float

log(var.string) -- get the integer value stored in var and convert it to a
string

.integer can be used to either Get or Set the value of var as an integer (whole number).

var:is_integer() -- returns a boolean if the variant contains an integer

Range

An integer can be stored with an optional range parameter

var = Variant() -- where var is the name of the variant.

var.integer = 123 -- Set var to an integer value of 123

var.range = 255 -- Set the range of var to be 255

This can be used to calculate fractions and/or to define that an Variant is a 0-1, 0-100 or 0-255 value.

- 348 -

Variants

The range of the variant should be set if you intend to use the variant to set an intensity or colour value.

Some captured variables have a range attribute, and this is indicated in the log, as shown above.

Real

A real variant can be used to store a floating point (decimal) number.

var = Variant() -- where var is the name of the variant.

var.real = 12.3 -- Set var to an integer value of 12.3

log(var.real) -- get the integer value stored in var

.real can be used to either Get or Set the value of var as a real number.

String

A string variant can be used to store a string of ASCII characters

var = Variant() -- where var is the name of the variant

var.string = “example” -- Set var to a string value of “example”

log(var.string) -- get the string value stored in var

.string can be used to either Get or Set the value of var as a string

var:is_string() -- returns a boolean if the variant contains a string

IP Address

var = Variant() -- where var is the name of the variant

var.ip_address = “192.168.1.23” -- Set var to the IP Address 192.168.1.23 or -
1062731497

log(var) -- get the stored data (“192.168.1.23”)

log(var.ip_address) -- get the stored IP Address (-1062731497)

log(var.string) -- get the stored IP Address and convert it to a string
(“192.168.1.23”)

log(var.integer) -- get the stored IP Address and convert it to an integer (-
1062731497)

.ip_address can be used to either Get or Set the value of var as an IP Address.

As a setter, you can pass a dotted decimal string (e.g. “192.168.1.23” or the integer representation -1062731497)

var:is_ip_address() -- returns a boolean if the variant contains a IP Address

- 349 -

Pharos Designer User Manual

Shorthand
Variants can also be defined using a shorthand:

var = Variant(128,255) -- create variable var as an integer (128) with range 0-
255

var = Variant(128) -- create variable var as a real number (128.0)

var = Variant(12.3) -- create variable var as a real number (12.3)

var = Variant(“text”) -- create variable var as a string (“text”)

Note: There isn’t a shorthand for IP Addresses

Variant Definition
In general, the Variant object contains the following variables and functions:

Variant() Create new variant
.integer Get or Set an integer data type
.range Get or Set the range of an integer data type.
.real Get or Set a real data type (number with decimal point)
.string Get or Set a string data type
.ip_address Get or Set an IP Address data type
:is_integer() returns true or false to show whether the stored data has an integer representation
:is_string() returns true or false to show whether the stored data has a string representation
:is_ip_address() returns true or false to show whether the stored data has an IP Address representation

Default Variants
Some script functions return a Variant:

get_trigger_variable()

e.g. get_trigger_variable(1).integer

get_group(1).master_intensity_level

e.g. get_group(1).master_intensity_level.integer

get_group(1).master_intensity_level.range

get_content_target(1).master_intensity_level

e.g. get_content_target(1).master_intensity_level.integer

get_content_target(1).master_intensity_level.range

- 350 -

API v4

API v4
The Pharos system includes multiple API options:

l Lua (used internally with Conditions and Actions)
l HTTP (used with external devices/software to communicate with a controller)
l JavaScript (used with CustomWeb Interfaces)

These APIs have been unified to simplify their use as much as possible.

Glossary:

l Object - A collection of key value pairs e.g. "name" = "Controller 1" (syntax will differ between languages).
l String - A series of characters e.g."Th1s_is-4(string)"
l Number - Any whole or floating point(decimal) number e.g. 1,2,3,1.5,12.3456)
l Integer - A whole number
l Bounded integer - An integer with a range (e.g. 10:100 = 10%)
l Float/real/number - A decimal number (e.g. 3.2 or 1.0)
l JSON - (JavaScript Object Notation) a way of transferring information in the form of a JavaScript Object
l GET - A HTTP method to request data from a server
l POST - A HTTP method to request data in amore secure way
l PUT - A HTTP method to send data to a server
l Variant - See here
l [] - anything shownwithin square brackets is optional. The square brackets should be omitted if the optional
section is used.

l callback - A function to run when the javascript function has been run, or a reply has been received.

HTTP Requests

Please note, when a HTTP POST request is sent, it must include a Content-Type header set to "application/json",
otherwise it will be treated as invalid.

API Queries
Below are the ways of getting data from the controller. show

System
Returns data about the controller. show

Lua
The system namespace has the following properties:

Property Return type Return Example
.hardware_type string "lpc"
.channel_capacity integer 512
.serial_number string "006321"
.memory_total string "12790Kb"
.memory_used string "24056Kb"

- 351 -

Pharos Designer User Manual

.memory_free string "103884Kb"

.storage_size string "1914MB"

.bootloader_version string "0.9.0"

.firmware_version string "2.7.0"

.reset_reason string "Software Reset"

.last_boot_time DateTime object

.ip_address string "192.168.1.3"

.subnet_mask string "255.255.255.0"

.broadcast_address string "192.168.1.255"

.default_gateway string "192.168.1.3"

Example:

capacity = system.channel_capacity

boot_time = system.last_boot_time.time_string

HTTP
GET /api/system

Returns an object with the following properties:

Property Return type Return Example
hardware_type string "LPC"
channel_capacity integer 512
serial_number string "006321"
memory_total string "12790Kb"
memory_used string "24056Kb"
memory_free string "103884Kb"
storage_size string "1914MB"
bootloader_version string "0.9.0"
firmware_version string "2.7.0"
reset_reason string "Software Reset"
last_boot_time string "01 Jan 2017 09:09:38"
ip_address string "192.168.1.3"
subnet_mask string "255.255.255.0"
broadcast_address string "192.168.1.255"
default_gateway string "192.168.1.3"

JavaScript
get_system_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_system_info(function(system){

- 352 -

API v4

var capacity = system.channel_capacity

}

Project
Returns data about the project. Show

Lua
get_current_project()

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

project_name = get_current_project().name

HTTP
GET /api/project

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"
upload_date string "2017-01-30T15:19:08"

JavaScript
get_project_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_project_info(function(project){

var author = project.author

}

Replication
Returns data about the install replication. Show

- 353 -

Pharos Designer User Manual

Lua
get_current_replication()

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

rep_name = get_current_replication().name

HTTP
GET /api/replication

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

JavaScript
get_replication(callback)

Returns an object with the same properties as in the HTTP call

Location
Returns data about the install location. Show

Lua
get_location()

Returns an object with the following properties:

Property Return type Return Example
lat float 51.512
long float -0.303

Example:

lat = get_location().lat

HTTP
Not currently available.

- 354 -

API v4

JavaScript
Not currently available.

Network 2
Returns data about the Network 2 (Protocol) Interface. Show

Lua
The protocol_interface namespace has the following properties:

Property Return type Return Example
.has_interface boolean true
.is_up boolean true
..ip_address string "192.168.1.12"
.subnet_mask string "255.255.255.0"
.gateway string "192.168.1.1"

Example:

if protocol_interface.has_interface == true then

ip = protocol_interface.ip_address

end

HTTP
Not currently available.

JavaScript
Not currently available.

Time
Returns data about the time stored in the controller. Show

Lua
The time namespace has the following functions which return a DateTime object

l get_current_time()
l get_sunrise()
l get_sunset()
l get_civil_dawn()
l get_civil_dusk()
l get_nautical_dawn()
l get_nautical_dusk()
l get_new_moon()
l get_first_quarter()
l get_full_moon()
l get_third_quarter()

- 355 -

Pharos Designer User Manual

and the following properties

Property Return Type Return Example
is_dst boolean
gmt_offset string

Each function returns a DateTime object, with the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (1-12) 5
.monthday integer (1-31) 8
.weekday integer(1-7) 1
.hour integer(0-23) 13
.minute integer (0-59) 21
.second integer (0-59) 46
.utc_timestamp integer 1494249706
.time_string string
.date_string string

Example:

current_hour = time.get_current_time().hour

HTTP
GET /api/time

Returns an object with the following properties:

Property Return Type Return Example
datetime string "01 Feb 2017 13:44:42"
local_time integer (controller's local time inmilliseconds) 1485956682
uptime integer (time since last boot) 493347

JavaScript
get_current_time(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_current_time(function(time){

var uptime = time.uptime

}

Timeline
Returns data about the timelines in the project and their state on the controller. Show

- 356 -

API v4

Lua
get_timeline(timelineNum)

Returns a single Timeline object for the timeline with user number timelineNum.

The returned object has the following properties

Property Return Type Return
Example

name string "Timeline 1"
group string ('A', 'B', 'C', 'D','') 'A'
length integer 10000
source_
bus

integer (equivalent to constants: DEFAULT, TCODE_1 ... TCODE_6, AUDIO_
1 ... AUDIO_4) 1

timecode_
format string "SMPTE30"

audio_
band integer (0 is equivalent to constant VOLUME) 0

audio_
channel integer (equivalent to constants: LEFT, RIGHT or COMBINED) 1

audio_
peak boolean false

time_off-
set integer 5000

state integer (equivalent to constants: Timeline.NONE, Timeline.RUNNING,
Timeline.PAUSED, Timeline.HOLDING_AT_END, Timeline.RELEASED) 1

onstage boolean true
position integer 5000

priority
integer (equivalent to constants: HIGH_PRIORITY, ABOVE_NORMAL_
PRIORITY, NORMAL_PRIORITY, BELOW_NORMAL_PRIORITY or LOW_
PRIORITY)

0

custom_
properties (table, keys and values correspond to custom property names and values)

Example:

tl = get_timeline(1)

name = tl.name

state = tl.state

if (tl.source_bus == TCODE_1) then

-- do something

end

- 357 -

Pharos Designer User Manual

HTTP
GET /api/timeline[?num=timelineNumbers]

l num can be used to filter which timelines are returned and can be a single number or a string representing the
required timelines (e.g. "1,2,5-9")

Returns an object with the following properties:

timelines array of timeline objects

Each timeline object contains the following properties:

Property Return Type Return
Example

num integer 1
name string "Timeline 1"
group string('A', 'B', 'C', 'D' or empty) "A"
length integer 10000
source_bus string ('internal', 'timecode_1',...'timecode_6', 'audio_1',...'audio_4') 100
timecode_
format string "SMPTE30"

audio_band integer (0 is volume band) 1
audio_channel string ('left', 'right', 'combined') "combined"
audio_peak boolean false
time_offset integer 5000
state string ('none', 'running', 'paused', 'holding_at_end', 'released') "running"
onstage boolean true
position integer 10000
priority string ('high', 'above_normal', 'normal', 'below_normal', 'low') "normal"
custom_prop-
erties

(object, properties and property values correspond to custom property
names and values)

JavaScript
get_timeline_info(callback[, num])

l num can be used to filter which timelines are returned and is defined as a JSON object which can contain a
single number or a string representing the required timelines (e.g. "1,2,5-9")

Returns an array of timelines in the sameway as the HTTP call

Example:

Query.get_timeline_info(function(t){

var name = t.timelines[0].name //name of the first timeline

}, {"num":"1-4"})

- 358 -

API v4

Scene
Returns data about the Scenes in the project and their state on the controller. Show

Lua
get_scene(sceneNum)

Returns a single Scene object for the Scene with user number SceneNum.

The returned object has the following properties

Property Return Type Return
Example

name string "Scene 1"
group string (A-H) or empty "A"
state string ('none', 'started') "none"
onstage boolean false
custom_prop-
erties

(object, properties and property values correspond to custom property
names and values)

Example:

scn = get_scene(1)

name = scn.name

state = scn.state

HTTP
GET /api/scene[?num=sceneNumbers]

num can be used to filter which scenes are returned and can be a single number or array

Returns an object with the following properties:

scenes array of scene objects

Each scene object contains the following properties:

Property Return Type Return Example
name string "Scene 1"
num integer 1
state string ('none', 'started') "none"
onstage boolean false

JavaScript
get_scene_info(callback[, num])

filter may contain a num property which is used to filter which scenes are returned

Returns an array of scenes in the sameway as the HTTP call

- 359 -

Pharos Designer User Manual

Example:

Query.get_scene_info(function(s){

var name = s.scenes[0].name //name of the first timeline

}, {"num":"1-4"})

Group
Returns data about the groups in the project. Show

Lua
get_group(groupNum)

Returns aGroup object for the group with user number groupNum.

The returned object has the following properties:

Property Return Type Return Example
name string "Group 1"
master_intensity_level Variant

Example:

grp = get_group(1)

name = grp.name

HTTP
GET /api/group[?num=groupNumbers]

num can be used to filter which groups are returned and can be a single number or array

Returns an object with the following properties:

groups array of group objects

Each group object contains the following properties:

Property Return Type Return Example
num integer (only included for user created groups) 1
name string "Group 1"
level integer (0-100) 100

JavaScript
get_group_info(callback[, num])

filter may contain a num property which is used to filter which groups are returned

Returns an array of groups in the sameway as the HTTP call

- 360 -

API v4

Example:

Query.get_group_info(function(g){

var name = g.groups[0].name //name of the first timeline

}, {"num":"1-4"})

Note:Group 0 will return data about the 'All Fixtures' group

Controller
Returns data about the controller. Show

Lua
get_current_controller()

get_network_primary()

Returns an object for the controller running the script, or the network primary, containing the following properties:

Property Return Type Return Example
number integer 1
name string "Controller 1"

Example:

cont = get_current_controller()

name = cont.name

is_controller_online(controllerNumber)

Returns true if the controller with user number controllerNum has been discovered, and false otherwise

Example:

if (is_controller_online(2)) then

log("Controller 2 is online")

else

log("Controller 2 is offline")

end

HTTP
GET /api/controller

Returns an object with the following properties:

controllers array of controller objects (one for each controller in the project)

Each controller object contains the following properties:

- 361 -

Pharos Designer User Manual

Property Return Type Return
Example

num number 1
type string "LPC"
name string "Controller 1"
serial string "009060"

ip_address string (if the controller is discovered)/empty (if the controller is not dis-
covered or is the queried controller)

"192.168.1.3"
or ""

online boolean true
is_network_
primary boolean true

JavaScript
get_controller_info(callback)

Returns an array of controllers in the sameway as the HTTP call

Example:

Query.get_controller_info(function(controller){

var name = controller[0].name // name of the first controller

}

Temperature
Returns data about the controller's temperature. Show

Lua
get_temperature()

Returns an object with the following properties

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core_temp number (only for LPC X and VLC/VLC+) 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

Example:

temp = get_temperature()

log(temp.ambient_temp)

HTTP
GET /api/temperature

- 362 -

API v4

Returns an object with the following properties:

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core1_temp number (only for LPC X and VLC/VLC+) 44
core2_temp number (only for LPC X rev 1 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

JavaScript
get_temperature(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_temperature(function(temp){

var ambient = temp.ambient_temp // ambient temperature of the controller

}

Remote Device
Returns data about the Remote Device/s in the project. Show

Lua
get_rio(type, num):get_input(inputNum)

l type can be RIO80, RIO44 or RIO08
l num is the remote device number
l inputNum is the number of the input

Returns a boolean if the input is set to Digital or Contact Closure, or an integer if the input is set to Analog.

Example:

rio = get_rio(RIO44, 1)

input = rio:get_input(1)

get_rio(type, num):get_output(inputNum)

l type can be RIO80, RIO44 or RIO08
l num is the remote device number
l outputNum is the number of the output

Returns a boolean showing the current state of the output.

Example:

rio = get_rio(RIO44, 1)

- 363 -

Pharos Designer User Manual

output_state = rio:get_output(1)

get_bps(num):get_state(buttonNum)

l num is the BPS number
l buttonNum is the number of the button

Returns the state of the button, which can be RELEASED, PRESSED, HELD or REPEAT

Example:

bps = get_bps(1)

btn = bps:get_state(1)

HTTP
GET /api/remote_device

Returns an array of all remote devices in the project.

The returned object has the following structure

remote_devices array of Remote Device objects

Each Remote Device object contains the following properties:

Property Return Type Return Example
num integer 1

type
string ('RIO08', 'RIO44',
'RIO80', 'BPS', 'BPI', 'RIO
A', 'RIO D')

"RIO 44"

serial
array (all discovered serial
number for the address and
type)

["001234"]

outputs

array (of Output objects, only
present for RIO44 and
RIO08 that are on the quer-
ied controller)

[{"output":1,"value":true},{"output":2,"value":true},{"out-
put":3,"value":true},{"output":4,"value":true}]

inputs

array (of Input objects, only
present for RIO44 and
RIO80 that are on the quer-
ied controller)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"-
type":"Contact Closure","value":true},{"input":3,"type":"Contact
Closure","value":true},{"input":4,"type":"Contact Clos-
ure","value":true}]

online boolean (if the remote device
is detected as being online) true

TheOutput object has the following properties:

Property Return Type Return Example
output integer 1
state boolean (truemeans the output is on, falsemeans it is off) false

The Input object has the following properties:

- 364 -

API v4

Property Return Type Return Example
input integer 1
type string ('Analog', 'Digital', 'Contact Closure') 'Digital'
value integer or bool (depends on type) true

JavaScript
get_remote_device_info(callback)

Returns an array of all remote devices in the project with the same properties as in the HTTP call.

Example:

Query.get_remote_device_info(function(remote){

var type = remote[0].type // type of the first remote device

}

Text Slots
Returns data about the text slots in the project. Show

Lua
get_text_slot(slotName)

l slotName is the name of the text slot

Returns the value of slotName

Example:

log(get_text_slot("test_slot"))

HTTP
GET /api/text_slot[?names=slotNames]

slotNames can be used to filter which text slots are returned and can be a single name or array

The returned object has the following structure

text_slots array of Text Slot objects

Each Text Slot object contains the following properties:

Property Return Type Return Example
name string "text"
value string "example"

JavaScript
get_text_slot(callback[, filter])

filter may contain a names property which is used to filter which text slot values are returned

- 365 -

Pharos Designer User Manual

Returns an array of all text slots in the project with the same properties as in the HTTP call.

Example:

Query.get_text_slot(function(text){

var value = text[0].value // value of the first text slot

}, {names: "test_slot1", "test_slot2"})

Get Log
Returns the log from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/log

The returned object has the following structure

Property Return Type
log string (containing the whole log of the controller)

JavaScript
Not currently available.

Protocol
Returns the protocols and universes being output from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/protocol

Returns all the universes on the queried controller

The returned object has the following structure

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example
type integer 1
name string "DMX"
disabled boolean (whether the output has been disabled true

- 366 -

API v4

via an Action)

universes array (Universe objects) {"key":{"index":1},"name":"1"},{"key":
{"index":2},"name":"2"}

dmx_
proxy DMX Proxy Object (where appropriate) { "ip_address": "192.168.1.17", "name": "Con-

troller 1" }

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

For RIO DMX:

Property Return Type Return Example
remote_device_num integer 1
remote_device_type integer (corresponding to values in query.js) 1

For EDN:

Property Return Type Return Example
remote_device_num integer 1
port integer 1

JavaScript
get_protocols(callback)

Returns all the universes on the queried controller, with the same structure as the HTTP response.

Output
Returns the levels being output from the queried controller. Show

- 367 -

Pharos Designer User Manual

Lua
get_dmx_universe(idx)

get_artnet_universe(idx)

get_pathport_universe(idx)

get_sacn_universe(idx)

l idx is the required universe number

get_kinet_universe(power_supply_num, port_num)

l power_supply_num is the power supply to return the output from
l port_num is the port to return the output from

These all return a Universe object, which has the following function

get_channel_value(chnl)

l chnl is the channel to get the value from

Example:

uni = get_dmx_universe(1) -- get DMX Universe 1

level = uni:get_channel_value(1) -- get channel 1 from the returned universe

HTTP
GET /api/output?universe=universeKey

l universeKey is a string in the form protocol:index for DMX, Pathport, sACN and Art-Net, pro-
tocol:kinetPowerSupplyNum:kinetPort for KiNET, protocol:remoteDeviceType:remoteDeviceNum for RIO
DMX and protocol:remoteDeviceNum:port for EDN.

l protocol can be dmx, pathport, sacn, art-net, kinet, rio-dmx or edn
l remoteDeviceType can be rio08, rio44 or rio80

Example:

GET /api/output?universe=dmx:1

GET /api/output?universe=rio-dmx:rio44:1

The returned object has the following structure

Property Return Type Return Example
channels array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

disabled boolean (whether the output has been disabled
via an Action) true

proxied_
tpc_name

string (only if controller is LPC, universe is DMX
2, DMX Proxy has been enabled and the TPC is
offline)

'Controller 2'

- 368 -

API v4

JavaScript
get_output(universeKey, callback)

Argument Type Example

universekey string or an object containing protocol and either index, kinet_power_supply_num
and kinet_port or remote_device_type and remote_device_num dmx:1

l universeKey can be either a string, or an object containing protocol and either index, kinet_power_supply_
num and kinet_port or remote_device_type and remote_device_num as received from get_protocols

Example:

Query.get_output({protocol:KINET, kinet_port:1, kinet_power_supply_num:1}, func-
tion(u){

console.log(u)

})

Query.get_output({protocol:DMX, num:1}, function(u){

console.log(u)

})

Query.get_output("dmx:1", function(u){

console.log(u)

})

Returns an object with the same structure as in the HTTP call

Input
Returns the inputs on the queried controller. Show

Lua
get_input(idx)

Argument Type Example
idx integer 1

Returns the value of the controllers input as a boolean or integer

Example:

in1 = get_input(1)

if in1 == true then

- 369 -

Pharos Designer User Manual

log("Input 1 is digital and high")

elseif in1 == false then

log("Input 1 is digital and low")

else

log("Input 1 is analog at " .. in1)

get_dmx_input(chnl)

Argument Type Example
chnl integer 1

l chnl is the required channel number

Returns the value of the DMX input at channel chnl as an integer. If no DMX Input is detected, it will return nil.

HTTP
GET /api/input

The returned object has the following structure

Property Return
Type Return Example

gpio

array (of
Input
objects, on
LPC or
TPC+EXT)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"type":"Contact Clos-
ure","value":true},{"input":3,"type":"Contact Closure","value":true},{"input":4,"-
type":"Contact Closure","value":true},{"input":5,"type":"Contact
Closure","value":true},{"input":6,"type":"Contact Closure","value":true},{"input":7,"-
type":"Contact Closure","value":true},{"input":8,"type":"Contact Clos-
ure","value":true}]

dmxIn

object
(DMX Input
object, if
DMX Input
is
configured)

[0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

The Input object has the following properties:

Property Return Type Return Example
input integer 1
type string ('Analog', 'Digital', 'Contact Closure') "Contact Closure"
value integer or bool (depends on type) true

The DMX Input object has the following properties:

Property Return Type Return Example

error string (if DMX Input is configured but no
DMX is received) "No DMX received"

dmxInFrame array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

- 370 -

API v4

dmxInSourceCount integer (the number of sources - will be
1 except for sACN) 1

dmxInProtocol string ("dmx", "art-net" or "sacn") "dmx"

JavaScript
Not currently available.

Trigger
Returns the triggers in the project. Show

Lua
Not currently available.

HTTP
GET /api/trigger?[type=[triggerType]]

l triggerType is a string defining the trigger types to be returned.

The returned object has the following structure

triggers array (of Trigger objects)

The Trigger object has the following properties:

Property Return Type Return Example
type string "Startup"
num integer 1
name string "Startup"
description string ""
trigger_text string "At startup"
conditions array (of Condition objects) [{"text":"Before 12:00:00 every day"}]
actions array (of Action objects [{"text":"Start Timeline 1"}]

The Condition and Action objects have the following properties:

Property Return Type Return Example
text string "Start Timeline 1"

JavaScript
Not currently available.

Lua Variable
Returns the current value of the specified Lua variable. Show

Lua
Not currently available.

- 371 -

Pharos Designer User Manual

HTTP
GET /api/lua?variables=luaVariables

Argument Type Example
luaVariables string or comma separated list 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

JavaScript
get_lua_variables(luaVariables, callback)

Argument Type Example
luaVariables string or array 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

Example:

Query.get_lua_variables("myVar", function(lua){

var value = lua.myVar

}

Trigger Variable
Returns the value of a variables from the trigger that ran the script. Show

Lua
get_trigger_variable(idx)

Argument Type Example
idx integer 1

Returns the trigger variable at idx as a Variant object.

Example:

-- Use with a TPC Colour Move Trigger

red = get_trigger_variable(1).integer

green = get_trigger_variable(2).integer

blue = get_trigger_variable(3).integer

-- Use with Serial Input "<s>\r\n"

input = get_trigger_variable(1).string

HTTP
Not currently available.

- 372 -

API v4

JavaScript
Not currently available.

Resources
Use to locate resources in the controller's memory. Show

Lua
get_resource_path(filename)

Argument Type Example
filename string 'settings.txt'

Returns a path to the resource filename.

Example:

dofile(get_resource_path("my_lua_file.lua"))

HTTP
Not currently available.

JavaScript
Not currently available.

Content Target
Returns information about a Content Target in the project. Show

Lua
On a VLC

get_content_target(compositionNum)

On a VLC+

get_content_target(compositionNum, type)

l compositionNum is the usernumber of the composition to return
l type is the type of target within the composition to return (PRIMARY, SECONDARY, OVERLAY_1,
OVERLAY_2)

Returns a Content Target object with the following properties:

master_intensity_level Variant
rotation_offset (VLC+ only) float
x_position_offset (VLC+ only) float
y_position_offset (VLC+ only) float

Example:

- 373 -

Pharos Designer User Manual

target = get_content_target(1)

current_level = target.master_intensity_level

target = get_content_target(1,PRIMARY)

current_angle = target.rotation_offset

HTTP
Not currently available.

JavaScript
Not currently available.

Config
Returns information about a controller's Configuration. Show

Lua
get_log_level()

Returns the current log level of the controller

get_syslog_enabled()

Returns true if Syslog is enabled, false otherwise

get_syslog_ip_address()

Returns the IP address of the Syslog server

get_ntp_enabled()

Returns true if NTP is enabled

get_ntp_ip_address()

Returns the IP address of the NTP server

Example:

HTTP
GET /api/config

Returns an object with the following properties:

Property Return Type Return Example
ip string "192.168.1.3"
subnet_mask string "255.255.255.0"
gateway string "192.168.1.1"

- 374 -

API v4

dhcp_enabled boolean true
name_server_1 string "192.168.1.1"
name_server_2 string "8.8.8.8"
http_port integer 80
https_port integer 443
year integer 2019
month integer (1-12) 4
day integer (1-31) 25
hour integer (0-23) 13
minute integer (0-59) 21
second integer (0-59) 46
watchdog_enabled boolean true
log_level integer (1-5) 3
syslog_enabled boolean true
syslog_ip string "192.168.1.2"
ntp_enabled boolean true
ntp_ip string "192.168.1.1"

JavaScript
get_config(callback)

Returns the controller's configuration

The returned object has the same structure as in the HTTP call

API Actions
Below are the ways of changing properties or changing output on the controller. show

Start Timeline
Start a timeline in the project Show

Lua
get_timeline(timelineNum):start()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "start",

"num": timelineNum

- 375 -

Pharos Designer User Manual

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.start_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Start Scene
Start a scene in the project Show

Lua
get_scene(sceneNum):start()

Argument Type Example
sceneNum integer 1

HTTP
POST /api/scene

{

"action": "start",

"num": sceneNum

}

Argument Type Example
sceneNum integer 1

JavaScript
Query.start_scene({ "num": sceneNum}, callback)

Argument Type Example
sceneNum integer 1

Release Timeline
Release a timeline in the project Show

Lua
get_timeline(timelineNum):release([fade])

Argument Type Example

- 376 -

API v4

timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "release",

"num": timelineNum[,

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.release_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Release Scene
Release a scene in the project Show

Lua
get_scene(sceneNum):release([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

{

"action": "release",

"num": sceneNum[,

"fade": fade]

}

- 377 -

Pharos Designer User Manual

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.release_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

Toggle Timeline
Toggle a timeline in the project (if it is running, stop it, and if it is not running, start it) Show

Lua
get_timeline(timelineNum):toggle([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "toggle",

"num": timelineNum[,

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.toggle_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Toggle Scene
Toggle a scene in the project (if it is running, stop it, and if it is not running, start it) Show

- 378 -

API v4

Lua
get_scene(sceneNum):toggle([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

{

"action": "toggle",

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.toggle_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

Pause Timeline
Pause a timeline in the project Show

Lua
get_timeline(timelineNum):pause()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "pause",

"num": timelineNum

- 379 -

Pharos Designer User Manual

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.pause_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Resume Timeline
Resume a timeline in the project Show

Lua
get_timeline(timelineNum):resume()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "resume",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.resume_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Pause All
Pause all timelines in the project Show

Lua
pause_all()

- 380 -

API v4

HTTP
POST /api/timeline

{

"action": "pause"

}

JavaScript
Query.pause_all(callback)

Resume All
Resume all timelines in the project Show

Lua
resume_all()

HTTP
POST /api/timeline

{

"action": "resume"

}

JavaScript
Query.resume_all(callback)

Release All
Release all timelines, scenes or timelines, scenes and overrides in the project Show

Lua
release_all([fade,] [group])

release_all_timelines([fade,] [group])

release_all_scenes([fade,] [group])

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

HTTP
POST /api/release_all

POST /api/timeline

- 381 -

Pharos Designer User Manual

POST /api/scene

{

"action": "release"[, (not required for release all)

"group": group][,

"fade": fade]

}

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

JavaScript
release_all_timelines({["fade": fade]}, callback)

release_all_scenes({["fade": fade]}, callback)

release_all({ ["fade": fade,] ["group": group] }, callback)

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

Set Timeline Rate
Set the rate of a timeline in the project Show

Lua
get_timeline(timelineNum):set_rate(rate)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

HTTP
POST /api/timeline

{

"action": "set_rate",

"num": timelineNum,

"rate": rate

}

Argument Type Example

- 382 -

API v4

timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_rate({"num": timelineNum, "rate": rate }, callback)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

Set Timeline Position
Set the position of a timeline in the project Show

Lua
get_timeline(timelineNum):set_position(position)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

HTTP
POST /api/timeline

{

"action": "set_position",

"num": timelineNum,

"position": position

}

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_position({"num": timelineNum, "position": position }, callback)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

Enqueue Trigger
Fire a trigger in the project Show

Lua

- 383 -

Pharos Designer User Manual

enqueue_trigger(num[,var...])

Argument Type Example
num - the trigger number to enqueue integer 1
var... - 0 or more variables to pass to the trigger comma separated variables 1,2,"string"

Example

enqueue_trigger(1,1,2,"string")

force_trigger(num[, var...])

Enqueues a trigger without testing its conditions first (it will always be fired).

HTTP
POST /api/trigger

{

"num": num[,

"var": var...][,

"conditions": test_conditions]

}

Argument Type Example
num integer 1
var... comma separated variables 1,2,"string"
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger
l test_conditions - Should the conditions on the trigger be tested?

JavaScript
Query.fire_trigger({"num": num[, "var": var...][, "conditions": test_conditions]
}, callback)

Argument Type Example
num integer 1
var... comma separated variables '1,2,"string"'
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger. If passingmultiple variables, they must be a single string sur-
rounded by single quotes ('), string variables should be surrounded by double quotes (").

l test_conditions - Should the conditions on the trigger be tested?

Run Script
Run a script or parse into the command line on the controller Show

- 384 -

API v4

Lua
Not currently available.

HTTP
POST /api/cmdline

{

"input": chunk,

}

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

JavaScript
Query.run_command({ "input": chunk }, callback)

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

Hardware Reset
Reset the controller (power reboot) Show

Lua
Not currently available.

HTTP
POST /api/reset

JavaScript
Not currently available.

Master Intensity
Master the intensity of a group or content target (applied as amultiplier to output levels) Show

Lua
Non-VLC

get_group(groupNum):set_master_intensity(level[, fade[, delay]])

VLC

get_content_target():set_master_intensity(level, [fade, [delay]])

- 385 -

Pharos Designer User Manual

VLC+

get_content_target(compositionNum, type):set_master_intensity(level, [fade,
[delay]])

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or integer (0-255) 128 or 0.5
fade float 2.0
delay float 2.0

Example:

get_group(1):set_master_intensity(128,3) -- master group 1 to 50% (128/255 = 0.5)
in 3 seconds)

HTTP
Non-VLC

POST /api/group

{

"action": "master_intensity",

"num": groupNum,

"level": level,

["fade": fade,]

["delay": delay]

}

VLC/VLC+

POST /api/content_target

{

"action": "master_intensity",

"level": level,

["fade": fade,]

["delay": delay,]

"type": type

}

- 386 -

API v4

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

JavaScript
Non-VLC

master_intensity({ "num": groupNum, "level": level, ["fade": fade,] ["delay":
delay] }, callback)

VLC/VLC+

master_content_target_intensity({ "type":type, "level": level, ["fade": fade,] ["delay": delay] }, callback)

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

Example:

Query.master_intensity({"num":1,"level":"50:100","fade":3) -- master group 1 to
50% (50/100 = 0.5) in 3 seconds)

Note:Group 0 will master the intensity of the 'All Fixtures' group

Set RGB
Set the Intensity, Red, Green, Blue levels for a fixture or group. Show

Lua
get_fixture_override(num)

get_group_override(num)

:set_irgb(intensity, red, green, blue, [fade, [path]])

:set_intensity(intensity, [fade, [path]])

:set_red(red, [fade, [path]])

:set_green(green, [fade, [path]])

:set_blue(blue, [fade, [path]])

:set_temperature(temperature, [fade, [path]])

- 387 -

Pharos Designer User Manual

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:set_rgb(255, 255, 0, 0) -- Set the fixture to Red

HTTP
PUT /api/override

{

"target": target,

"num": num,

["intensity": intensity,]

["red": red,]

["green": green,]

["blue": blue,]

["temperature": temperature,]

["fade": fade,]

["path": path]

}

Argument Type Example

target string (from
options) "group", "fixture"

num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255

- 388 -

API v4

temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Javascript
set_group_override({ "num": num, ["intensity": intensity,] ["red": red,] ["green":
green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,] ["path":
path] }, callback)

set_fixture_override({ "num": num, ["intensity": intensity,] ["red": red,]
["green": green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,]
["path": path] }, callback)

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

Query.set_fixture_override({ "num": 1, "intensity": 255, "red": 255, "green": 0,
"blue": 0});

Note:Group 0 will set the levels of the 'All Fixtures' group

Clear RGB
Remove any overrides on fixtures or groups. Show

Lua
get_fixture_override(num)

get_group_override(num)

:clear([fade])

clear_all_overrides([fade])

Argument Type Example
num - group or fixture integer 1
fade float 2.0

- 389 -

Pharos Designer User Manual

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:clear() -- Clear the override on fixture 1

HTTP
DELETE /api/override

{

["target": target,]

["num": objectNum,]

["fade": fade]

}

If num is not included, target is ignored and all overrides are cleared.

Argument Type Example
target string (from options) "group" or "fixture"
num - group or fixture integer 1
fade float 2.0

JavaScript
clear_group_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_fixture_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_overrides({ ["fade": fade] }, callback)

Argument Type Example
num integer 1
fade float 2.0

Example:

Query.clear_overrides({"fade":3})

Set Text Slot
Set the value of a text slot used in the project. Show

Lua
set_text_slot(name, value)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

- 390 -

API v4

Example:

set_text_slot("myTextSlot", "Hello World!")

HTTP
PUT /api/text_slot

{

"name": name,

"value": value

}

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

JavaScript
set_text_slot({"name": name, "value": value}, callback)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

Query.set_text_slot("name:"myTextSlot", "value":"Hello World!")

Set BPS Button LED
Set the effect and intensity on BPS button LEDS. Show

Lua
get_bps(num):set_led(button, effect, [intensity], [fade])

Argument Type Example
num integer 1
button integer 1

effect OFF, ON, SLOW_FLASH, FAST_FLASH, DOUBLE_FLASH, BLINK, PULSE,
SINGLE, RAMP_ON, RAMP_OFF

FAST_
FLASH

intensity integer (1-255) 255
fade float 0.0

Example:

get_bps(1):set_led(1,FAST_FLASH,255) -- Set button 1 on BPS 1 to Fast Flash at
full intensity

- 391 -

Pharos Designer User Manual

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Control Value
Set the value on a Touch Slider or Color Picker. Show

Lua
set_control_value(name, [index,] value[, emitChange])

Argument Type Example
name - control Key string "slider001"
index - axis of movement (slider has 1, colour picker has 3) integer (1-3) (default 1) 1
value integer (0-255) 128
emitChange boolean (default false) false

Example:

set_control_value("slider001", 1, 128) -- set slider001 to half and don't fire
associated triggers

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Control State
Set the state on a Touch control. Show

Lua
set_control_state(name, state)

Argument Type Example
name - control Key string "slider001"
state - the state name form Interface string (from options in Interface) "Green"

- 392 -

API v4

Example:

set_control_state("slider001", "Green") -- set slider001 to a state called
"Green"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Control Caption
Set the caption on a Touch control. Show

Lua
set_control_caption(name, caption)

Argument Type Example
name - control Key string "button001"
caption - text to display string "On"

Example:

set_control_caption("button001", "On") -- set button001's caption to "On"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Page
Change the page on a Touch interface. Show

Lua
set_interface_page(number[, transition])

Argument Type Example
number integer 4
transition SNAP, PAN_LEFT, PAN_RIGHT PAN_LEFT

- 393 -

Pharos Designer User Manual

Example:

set_interface_page(4) -- change the page on the TPC's interface to page 4

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Disable Page
Disable the touchscreen. Show

Lua
set_interface_enabled([enable])

Argument Type Example
enable boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Lock Touch Device
Lock the Touch Device (requires Lock code to be set within Interface). Show

Lua
set_interface_locked([lock])

Argument Type Example
lock boolean (default true) true

Example:

- 394 -

API v4

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Transition Content Target
Move or rotate a Content Target. Show

Lua
get_content_target(compositionNum, type)

:transition_rotation([offset], [count], [period], [delay], [useShortestPath])

:transition_x_position([offset], [count], [period], [delay])

:transition_y_position([offset], [count], [period], [delay])

Argument Type Example
compositionNum integer 1
type PRIMARY, SECONDARY, OVERLAY_1, OVERLAY_2 PRIMARY
offset integer 10
count integer 1
period integer 5
delay integer 0
useShortestPath boolean (default false) false

Example:

tar = get_composition_target(1,PRIMARY)

tar:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds

tar:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds

tar:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

- 395 -

Pharos Designer User Manual

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Transition Adjustment Target
Move or rotate a Adjustment Target. Show

Lua
get_adjustment(num)

:transition_rotation([offset], [count], [period], [delay], [useShortestPath])

:transition_x_position([offset], [count], [period], [delay])

:transition_y_position([offset], [count], [period], [delay])

Argument Type Example
num integer 1
offset integer 10
count integer 1
period integer 5
delay integer 0
useShortestPath boolean (default false) false

Example:

tar = get_adjustment(1)

tar:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds

tar:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds

tar:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Beacon Controller
Beacons the controller (flashes Status LEDs or screen). Show

Lua

- 396 -

API v4

Not currently available.

HTTP
POST /api/beacon

JavaScript
toggle_beacon(callback)

Example:

Query.toggle_beacon()

Output To Log
Writes amessage to the controller's Log. Show

Lua
log([level,]message)

Argument Type Example

level option (LOG_DEBUG, LOG_TERSE, LOG_NORMAL, LOG_EXTENDED,
LOG_VERBOSE, LOG_CRITICAL, default LOG_NORMAL)

LOG_
CRITICAL

message string
"Some
message to
log."

Example:

log(LOG_CRITICAL, "This is a criticial message!") -- logs themessage at Critical log level

log("This is a normal message.") -- logs themessage at Normal log level.

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Send Variables To Web Interface
Sends data to the web interface in a JSON Object. Show

Lua
push_to_web(name, value)

Argument Type Example

- 397 -

Pharos Designer User Manual

name string "myVar"
value variable "Some value"

Example:

myVar = 15

push_to_web("myVar", myVar) -- will push the object {"myVar": 15}

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Park A Channel
Parks an output channel at a specified level. Show

Lua
Universe:park(channel, value)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1
value integer (0-255) 128

Example:

get_dmx_universe(1):park(1,128) -- Park channel 1 of DMX Universe 1 at 128 (50%)

HTTP
POST /api/channel

{

"universe": universeKey,

"channels": channelList,

"level": level

}

Argument Type Example

universeKey string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and "dmx:1"

- 398 -

API v4

protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

channelList comma separated list(1-512) "1-3,5"
level integer (0-255) 128

JavaScript
park_channel({ "universe": universeKey, "channels": channelList, "level": level },
callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"
value integer (0-255) 128

Example:

park_channel({ "universe": "dmx:1","channels": 1, "level":128}); // Park channel
1 of DMX Universe 1 at 128 (50%)

Unpark A Channel
Unparks an output channel. Show

Lua
Universe:unpark(channel)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1

Example:

get_dmx_universe(1):unpark(1) -- Unpark channel 1 of DMX Universe 1 (it will go
back to normal output levels)

HTTP
DELETE /api/channel

{

"universe": universeKey,

"channels": channelList

- 399 -

Pharos Designer User Manual

}

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

JavaScript
park_channel({ "universe": universeKey, "channels": channelList }, callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

Example:

park_channel({ "universe": "dmx:1","channels": 1}); //Unpark channel 1 of DMX Uni-
verse 1 (it will go back to normal output levels)

Disable an Output
Unparks an output channel. Show

Lua
disable_output(protocol)

enable_output(protocol)

Argument Type Example
protocol option (DMX, PATHPORT, ARTNET, KINET, SACN, DVI, RIO_DMX) DMX

Example:

disable_output(DMX) -- Disable the DMX output from the controller

HTTP
POST /api/output

{

"protocol": protocol,

- 400 -

API v4

"action": action

}

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"
action string ("enable", "disable") "disable"

JavaScript
disable_output({ "protocol": protocol }, callback)

enable_output({ "protocol": protocol }, callback)

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"

Example:

disbale_output({ "protocol": "dmx"}); // Disable the DMX output

enable_output({ "protocol": "art-net"}); // Enable the Art-Net Output

Set Timeline Source Bus
Set the time source for a timeline. Show

Lua
Timeline:set_default_source()

Timeline:set_timecode_source(timecodeBus[, offset])

Timeline:set_audio_source(audioBus, band, channel[,peak])

Argument Type Example
Timeline Timeline Object get_timeline(1)
timecodeBus TCODE_1 ... TCODE_6 TCODE_1
audioBus AUDIO_1 ... AUDIO_4 AUDIO_1
band integer (0=volume) 0
channel LEFT, RIGHT or COMBINED LEFT
peak boolean (default false) false

Example:

get_timeline(1):set_timecode_source(TCODE_1) -- Set the timecode source of timeline 1 to timecode bus 1

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

- 401 -

Pharos Designer User Manual

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Enable Timecode Bus
Enables or disables a timecode bus. Show

Lua
set_timecode_bus_enabled(bus[, enable])

l bus is the timecode bus to enable or disable (TCODE_1 ... TCODE_6)
l enable determines whether the bus should be enabled or disabled (boolean, default true)

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Digital Output
Sets the output of a RIO to on or off. Show

Lua
get_rio(type, num):set_output(outputNum, state)

l type can be RIO80, RIO44 or RIO08
l num is the remote device number
l outputNum is the number of the output
l state is the state to set the output to and can be any of: 0, 1, true, false, ON, OFF

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

- 402 -

API v4

Set Log Level
Sets the output of a RIO to on or off. Show

Lua
set_log_level(log_level)

Sets the log level of the controller to log_level

l log_level can be LOG_DEBUG, LOG_TERSE, LOG_NORMAL, LOG_EXTENDED, LOG_VERBOSE,
LOG_CRITICAL or 0-5.

HTTP
Not currently available.

Use Edit Config

JavaScript
Not currently available.

Use Edit Config

Edit Config
Sets the output of a RIO to on or off. Show

Lua
Not currently available.

HTTP
POST /api/config

{

"ip": ipAddress,

"subnet_mask": subnetMask,

"gateway": gateway,

"dhcp_enabled": dhcpEnabled,

"name_server_1": dnsServer1IPAddress,

"name_server_2": dnsServer2IPAddress,

"http_port": httpPort,

"https_port": httpsPort,

"year": year,

- 403 -

Pharos Designer User Manual

"month": month,

"day": day,

"hour": hour,

"minute": minute,

"second": second,

"watchdog_enabled": watchdogEnabled,

"log_level": logLevel,

"syslog_enabled": syslogEnabled,

"syslog_ip": syslogIpAddress,

"ntp_enabled": ntpEnabled,

"ntp_ip": ntpIpAddress,

"password": password

}

Argument Type Example
ipAddress string "192.168.1.2"
subnetMask string "255.255.255.0"
gateway string "192.168.1.1"
dhcpEnabled boolean true
dnsServer1IPAddress string "192.168.1.1"
dnsServer2IPAddress string "8.8.8.8"
httpPort integer 80
httpsPort integer 443
year integer 2019
month integer (0-11) 4
day integer (1-31) 25
hour integer (0-23) 13
minute integer (0-59) 22
second integer (0-59) 40
watchdogEnabled boolean true
logLevel integer (0-5) 3
syslogEnabled boolean true
syslogIpAddress string "192.168.1.4"
ntpEnabled boolean true
ntpIpAddress string "192.168.1.1"
password string "myPassword"

If the response is 200OK, the response body will be

{

- 404 -

API v4

"restart": restart

}

restart is a boolean. If true, the controller will reset imminently in order to apply the changes

JavaScript
edit_config(params, callback)

Sends a request to change the controller's configuration

params is an object of the same format as in the HTTP request

The callback parameter will contain the same object as a response to the HTTP request

API Subscriptions
Subscriptions allow data to be pushed to the web interface whenever there is a change within the project. show

Subscribe Timeline Status
Subscribes to changes in the timeline status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_timeline_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true
position number (milliseconds) 5000

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_timeline_status(function(t){

alert(t.num + ": " + t.state)

})

- 405 -

Pharos Designer User Manual

Subscribe Scene Status
Subscribes to changes in the scene status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_scene_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_scene_status(function(s){

alert(s.num + ": " + s.state)

})

Subscribe Group Status
Subscribes to changes in group level, as set by theMaster Intensity action (any change is pushed to the interface).
Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_group_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1

- 406 -

API v4

name string 'Group 1'
level integer (0-255) 128

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_group_status(function(g){

alert(g.num + ": " + g.level)

})

Subscribe Remote Device Status
Subscribes to changes in Remote Device Online/Offline Status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_remote_device_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
type string ('RIO 08', 'RIO 44', 'RIO 80','RIO D', 'RIO A', 'BPS') 'Group 1'
online boolean true
serial string (of serial number) '001001'

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_remote_device_status(function(r){

alert(r.num + ": " + r.level)

})

Subscribe Beacon
Subscribes to Beacons (any change is pushed to the interface). Show

Lua
Not currently available.

- 407 -

Pharos Designer User Manual

HTTP
Not currently available.

JavaScript
subscribe_beacon(callback)

Returns an object with the following properties:

Property Return type Return Example
on boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_beacon(function(b){

if (b.on){

alert("Beacon Turned On")

else {

alert("Beacon Turned Off")

}

})

Subscribe Lua
The receiver for the push_to_web() Lua function. Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_lua(callback)

Returns an object with the following properties:

Property Return type Return Example
key as defined by push_to_web() value

Callback is used to define a function that should be called whenever the data is received

Example:

- 408 -

API v4

subscribe_lua(function(l){

key = Object.keys(l)[0]

value = l.key

alert(key + ": " + value)

})

API Objects
Below are the helper functions and objects in the project. show

Variant
A Lua object that allows a type and range to be associated with a variable. Show

Lua
See here.

HTTP
Not currently available.

JavaScript
Not currently available.

DateTime
A Lua object containing time data. Show

Lua
The DateTime object contains the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (0-11) 5
.monthday integer (0-30) 8
.weekday integer(0-6) 1
.hour integer(0-23) 13
.minute integer (0-59) 21
.second integer (0-59) 46
.utc_timestamp integer 1494249706
.time_string string
.date_string string

- 409 -

Pharos Designer User Manual

HTTP
Not currently available.

JavaScript
Not currently available.

Printing An Enum
Lua functions to convert integers returned from some functions as text. Show

Lua
digital_input_to_string()

button_state_to_string()

Examples:

log(digital_input_to_string(get_input(1)))

str = button_state_to_string(get_bps(1):get_state(1))

HTTP
Not currently available.

JavaScript
Not currently available.

- 410 -

API Authentication

API Authentication
If there is a controller password orWeb Interface Access Users setup in the project, then Authorisation will be
required to use the HTTP or JavaScript API.

There are two types of Authorisation available, which can be used in different situations:

1. Cookie Authentication
2. Token Authentication

Note:Both these authenticationmethods will expire after 5mins of inactivity

Cookie Authentication
Cookie Authentication is typically used by the web interface (either Default or Custom), and stores a small file on
your computer, which lets the controller know that you are currently signed in.

This authentication is provided through the Default Login page, when using the Default Web Interface, or a Custom
Web Interface, without a Custom login page defined.

Custom Login Page
If a CustomWeb Interface is being used, then a Custom Login page can be configured. Typically this will be a HTML
based page with a form element containing a username and password entry field. The code below can be used to
generate these fields, and send the data to the controller's web server to authenticate the user and store the Cookie:

<form action="/authorise" method="POST">

<input type="text" name="user">

<input type="password"
name="password">

<button
type="submit">Submit</button>

</form>

Token Authentication
Token Authentication is typically used by the HTTP API, where there isn't necessarily amethod to enter the
username and passwordmanually.

Token Authentication works by the user requesting a Bearer Token from the controller, with the username and
password, and this token is then used in future requests.

To request a Bearer Token:

1. Send a HTTP request to http://[ip address]/token in the following format:

Method: POST

Headers:

- 411 -

Pharos Designer User Manual

Content-Type: application/json

Body:

{"user":[username], "password":[password]}

2. If successful you will receive a response containing the following JSON Object:

{

"access_token": "[some_access_token]",

"expires_in": 300,

"token_type": "Bearer"

}

3. Subsequent requests will require the following header

Authorization: Bearer [some_access_token]

- 412 -

Legacy API

Legacy API
The Legacy API documentation is available here.

These APIs can be used if the Controller API Setting is set to Legacy.

- 413 -

Pharos Designer User Manual

API v3
The Pharos system includes multiple API options:

l Lua (used internally with Conditions and Actions)
l HTTP (used with external devices/software to communicate with a controller)
l JavaScript (used with CustomWeb Interfaces)

These APIs have been unified to simplify their use as much as possible.

Glossary:

l Object - A collection of key value pairs e.g. "name" = "Controller 1" (syntax will differ between languages).
l String - A series of characters e.g."Th1s_is-4(string)"
l Number - Any whole or floating point(decimal) number e.g. 1,2,3,1.5,12.3456)
l Integer - A whole number
l Bounded integer - An integer with a range (e.g. 10:100 = 10%)
l Float/real/number - A decimal number (e.g. 3.2 or 1.0)
l JSON - (JavaScript Object Notation) a way of transferring information in the form of a JavaScript Object
l GET - A HTTP method to request data from a server
l POST - A HTTP method to request data in amore secure way
l PUT - A HTTP method to send data to a server
l Variant - See here
l [] - anything shownwithin square brackets is optional. The square brackets should be omitted if the optional
section is used.

l callback - A function to run when the javascript function has been run, or a reply has been received.

HTTP Requests

Please note, when a HTTP POST request is sent, it must include a Content-Type header set to "application/json",
otherwise it will be treated as invalid.

API Queries
Below are the ways of getting data from the controller. show

System
Returns data about the controller. show

Lua
The system namespace has the following properties:

Property Return type Return Example
.hardware_type string "lpc"
.channel_capacity integer 512
.serial_number string "006321"
.memory_total string "12790Kb"
.memory_used string "24056Kb"
.memory_free string "103884Kb"

- 414 -

API v3

.storage_size string "1914MB"

.bootloader_version string "0.9.0"

.firmware_version string "2.7.0"

.reset_reason string "Software Reset"

.last_boot_time DateTime object

.ip_address string "192.168.1.3"

.subnet_mask string "255.255.255.0"

.default_gateway string "192.168.1.3"

Example:

capacity = system.channel_capacity

boot_time = system.last_boot_time.time_string

HTTP
GET /api/system

Returns an object with the following properties:

Property Return type Return Example
hardware_type string "LPC"
channel_capacity integer 512
serial_number string "006321"
memory_total string "12790Kb"
memory_used string "24056Kb"
memory_free string "103884Kb"
storage_size string "1914MB"
bootloader_version string "0.9.0"
firmware_version string "2.7.0"
reset_reason string "Software Reset"
last_boot_time string "01 Jan 2017 09:09:38"
ip_address string "192.168.1.3"
subnet_mask string "255.255.255.0"
default_gateway string "192.168.1.3"

JavaScript
get_system_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_system_info(function(system){

var capacity = system.channel_capacity

}

- 415 -

Pharos Designer User Manual

Project
Returns data about the project. Show

Lua
get_current_project()

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

project_name = get_current_project().name

HTTP
GET /api/project

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"
upload_date string "2017-01-30T15:19:08"

JavaScript
get_project_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_project_info(function(project){

var author = project.author

}

Replication
Returns data about the install replication. Show

Lua
get_current_replication()

- 416 -

API v3

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

rep_name = get_current_replication().name

HTTP
Not currently available.

JavaScript
Not currently available.

Location
Returns data about the install location. Show

Lua
get_location()

Returns an object with the following properties:

Property Return type Return Example
lat float 51.512
long float -0.303

Example:

lat = get_location().lat

HTTP
Not currently available.

JavaScript
Not currently available.

Network 2
Returns data about the Network 2 (Protocol) Interface. Show

Lua
The protocol_interface namespace has the following properties:

Property Return type Return Example
.has_interface boolean true

- 417 -

Pharos Designer User Manual

.is_up boolean true

..ip_address string "192.168.1.12"

.subnet_mask string "255.255.255.0"

.gateway string "192.168.1.1"

Example:

if protocol_interface.has_interface == true then

ip = protocol_interface.ip_address

end

HTTP
Not currently available.

JavaScript
Not currently available.

Time
Returns data about the time stored in the controller. Show

Lua
The time namespace has the following functions which return a DateTime object

l get_current_time()
l get_sunrise()
l get_sunset()
l get_civil_dawn()
l get_civil_dusk()
l get_nautical_dawn()
l get_nautical_dusk()
l get_new_moon()
l get_first_quarter()
l get_full_moon()
l get_third_quarter()

and the following properties

Property Return Type Return Example
is_dst boolean
gmt_offset string

Each function returns a DateTime object, with the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (1-12) 5
.monthday integer (1-31) 8
.weekday integer (1-7) 1

- 418 -

API v3

.hour integer (0-23) 13

.minute integer (0-59) 21

.second integer (0-59) 46

.utc_timestamp integer 1494249706

.time_string string

.date_string string

Example:

current_hour = time.get_current_time().hour

HTTP
GET /api/time

Returns an object with the following properties:

Property Return Type Return Example
datetime string "01 Feb 2017 13:44:42"
local_time integer (controller's local time inmilliseconds) 1485956682
uptime integer (time since last boot) 493347

JavaScript
get_current_time(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_current_time(function(time){

var uptime = time.uptime

}

Timeline
Returns data about the timelines in the project and their state on the controller. Show

Lua
get_timeline(timelineNum)

Returns a single Timeline object for the timeline with user number timelineNum.

The returned object has the following properties

Property Return Type Return
Example

name string "Timeline 1"
group string ('A', 'B', 'C', 'D','') 'A'
length integer 10000
source_ integer (equivalent to constants: DEFAULT, TCODE_1 ... TCODE_6, AUDIO_ 1

- 419 -

Pharos Designer User Manual

bus 1 ... AUDIO_4)
timecode_
format string "SMPTE30"

audio_
band integer (0 is equivalent to constant VOLUME) 0

audio_
channel integer (equivalent to constants: LEFT, RIGHT or COMBINED) 1

audio_
peak boolean false

time_off-
set integer 5000

state integer (equivalent to constants: Timeline.NONE, Timeline.RUNNING,
Timeline.PAUSED, Timeline.HOLDING_AT_END, Timeline.RELEASED) 1

onstage boolean true
position integer 5000

priority
integer (equivalent to constants: HIGH_PRIORITY, ABOVE_NORMAL_
PRIORITY, NORMAL_PRIORITY, BELOW_NORMAL_PRIORITY or LOW_
PRIORITY)

0

Example:

tl = get_timeline(1)

name = tl.name

state = tl.state

if (tl.source_bus == TCODE_1) then

-- do something

end

HTTP
GET /api/timeline[?num=timelineNumbers]

l num can be used to filter which timelines are returned and can be a single number or a string representing the
required timelines (e.g. "1,2,5-9")

Returns an object with the following properties:

timelines array of timeline objects

Each timeline object contains the following properties:

Property Return Type Return Example
num integer 1
name string "Timeline 1"
group string('A', 'B', 'C', 'D' or empty) "A"
length integer 10000

- 420 -

API v3

source_bus string ('internal', 'timecode_1',...'timecode_6', 'audio_1',...'audio_4') 100
timecode_format string "SMPTE30"
audio_band integer (0 is volume band) 1
audio_channel string ('left', 'right', 'combined') "combined"
audio_peak boolean false
time_offset integer 5000
state string ('none', 'running', 'paused', 'holding_at_end', 'released') "running"
onstage boolean true
position integer 10000
priority string ('high', 'above_normal', 'normal', 'below_normal', 'low') "normal"

JavaScript
get_timeline_info(callback[, num])

l num can be used to filter which timelines are returned and is defined as a JSON object which can contain a
single number or a string representing the required timelines (e.g. "1,2,5-9")

Returns an array of timelines in the sameway as the HTTP call

Example:

Query.get_timeline_info(function(t){

var name = t.timelines[0].name //name of the first timeline

}, {"num":"1-4"})

Scene
Returns data about the Scenes in the project and their state on the controller. Show

Lua
get_scene(sceneNum)

Returns a single Scene object for the Scene with user number SceneNum.

The returned object has the following properties

Property Return Type Return Example
name string "Scene 1"
state string ('none', 'started') "none"
onstage boolean false

Example:

scn = get_scene(1)

name = scn.name

state = scn.state

- 421 -

Pharos Designer User Manual

HTTP
GET /api/scene[?num=sceneNumbers]

num can be used to filter which scenes are returned and can be a single number or array

Returns an object with the following properties:

scenes array of scene objects

Each scene object contains the following properties:

Property Return Type Return Example
name string "Scene 1"
num integer 1
state string ('none', 'started') "none"
onstage boolean false

JavaScript
get_scene_info(callback[, num])

filter may contain a num property which is used to filter which scenes are returned

Returns an array of scenes in the sameway as the HTTP call

Example:

Query.get_scene_info(function(s){

var name = s.scenes[0].name //name of the first timeline

}, {"num":"1-4"})

Group
Returns data about the groups in the project. Show

Lua
get_group(groupNum)

Returns aGroup object for the group with user number groupNum.

The returned object has the following properties:

Property Return Type Return Example
name string "Group 1"
master_intensity_level Variant

Example:

grp = get_group(1)

name = grp.name

- 422 -

API v3

HTTP
GET /api/group[?num=groupNumbers]

num can be used to filter which groups are returned and can be a single number or array

Returns an object with the following properties:

groups array of group objects

Each group object contains the following properties:

Property Return Type Return Example
num integer (only included for user created groups) 1
name string "Group 1"
level integer (0-100) 100

JavaScript
get_group_info(callback[, num])

filter may contain a num property which is used to filter which groups are returned

Returns an array of groups in the sameway as the HTTP call

Example:

Query.get_group_info(function(g){

var name = g.groups[0].name //name of the first timeline

}, {"num":"1-4"})

Note:Group 0 will return data about the 'All Fixtures' group

Controller
Returns data about the controller. Show

Lua
get_current_controller()

Returns an object for the containing the following properties:

Property Return Type Return Example
number integer 1
name string "Controller 1"

Example:

cont = get_current_controller()

name = cont.name

is_controller_online(controllerNumber)

- 423 -

Pharos Designer User Manual

Returns true if the controller with user number controllerNum has been discovered, and false otherwise

Example:

if (is_controller_online(2)) then

log("Controller 2 is online")

else

log("Controller 2 is offline")

end

HTTP
GET /api/controller

Returns an object with the following properties:

controllers array of controller objects (one for each controller in the project)

Each controller object contains the following properties:

Property Return Type Return
Example

num number 1
type string "LPC"
name string "Controller 1"
serial string "009060"
ip_
address

string (if the controller is discovered)/empty (if the controller is not discovered or
is the queried controller)

"192.168.1.3"
or ""

online boolean true

JavaScript
get_controller_info(callback)

Returns an array of controllers in the sameway as the HTTP call

Example:

Query.get_controller_info(function(controller){

var name = controller[0].name // name of the first controller

}

Temperature
Returns data about the controller's temperature. Show

Lua
get_temperature()

- 424 -

API v3

Returns an object with the following properties

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core_temp number (only for LPC X and VLC/VLC+) 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

Example:

temp = get_temperature()

log(temp.ambient_temp)

HTTP
GET /api/temperature

Returns an object with the following properties:

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core1_temp number (only for LPC X and VLC/VLC+) 44
core2_temp number (only for LPC X rev 1 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

JavaScript
get_temperature(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_temperature(function(temp){

var ambient = temp.ambient_temp // ambient temperature of the controller

}

Remote Device
Returns data about the Remote Device/s in the project. Show

Lua
get_rio(type, num):get_input(inputNum)

l type can be RIO80, RIO44 or RIO08
l num is the remote device number
l inputNum is the number of the input

- 425 -

Pharos Designer User Manual

Returns a boolean if the input is set to Digital or Contact Closure, or an integer if the input is set to Analog.

Example:

rio = get_rio(RIO44, 1)

input = rio:get_input(1)

get_bps(num):get_state(buttonNum)

l num is the BPS number
l buttonNum is the number of the button

Returns the state of the button, which can be RELEASED, PRESSED, HELD or REPEAT

Example:

bps = get_bps(1)

btn = bps:get_state(1)

HTTP
GET /api/remote_device

Returns an array of all remote devices in the project.

The returned object has the following structure

remote_devices array of Remote Device objects

Each Remote Device object contains the following properties:

Property Return Type Return Example
num integer 1

type
string ('RIO08', 'RIO44',
'RIO80', 'BPS', 'BPI', 'RIO
A', 'RIO D')

"RIO 44"

serial
array (all discovered serial
number for the address and
type)

["001234"]

outputs

array (of Output objects, only
present for RIO44 and
RIO08 that are on the quer-
ied controller)

[{"output":1,"value":true},{"output":2,"value":true},{"out-
put":3,"value":true},{"output":4,"value":true}]

inputs

array (of Input objects, only
present for RIO44 and
RIO80 that are on the quer-
ied controller)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"-
type":"Contact Closure","value":true},{"input":3,"type":"Contact
Closure","value":true},{"input":4,"type":"Contact Clos-
ure","value":true}]

online boolean (if the remote device
is detected as being online) true

TheOutput object has the following properties:

- 426 -

API v3

Property Return Type Return Example
output integer 1
state boolean (truemeans the output is on, falsemeans it is off) false

The Input object has the following properties:

Property Return Type Return Example
input integer 1
type string ('Analog', 'Digital', 'Contact Closure') 'Digital'
value integer or bool (depends on type) true

JavaScript
get_remote_device_info(callback)

Returns an array of all remote devices in the project with the same properties as in the HTTP call.

Example:

Query.get_remote_device_info(function(remote){

var type = remote[0].type // type of the first remote device

}

Text Slots
Returns data about the text slots in the project. Show

Lua
get_text_slot(slotName)

l slotName is the name of the text slot

Returns the value of slotName

Example:

log(get_text_slot("test_slot"))

HTTP
GET /api/text_slot[?names=slotNames]

slotNames can be used to filter which text slots are returned and can be a single name or array

The returned object has the following structure

text_slots array of Text Slot objects

Each Text Slot object contains the following properties:

Property Return Type Return Example

- 427 -

Pharos Designer User Manual

name string "text"
value string "example"

JavaScript
get_text_slot(callback[, filter])

filter may contain a names property which is used to filter which text slot values are returned

Returns an array of all text slots in the project with the same properties as in the HTTP call.

Example:

Query.get_text_slot(function(text){

var value = text[0].value // value of the first text slot

}, {names: "test_slot1", "test_slot2"})

Get Log
Returns the log from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/log

The returned object has the following structure

Property Return Type
log string (containing the whole log of the controller)

JavaScript
Not currently available.

Protocol
Returns the protocols and universes being output from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/protocol

Returns all the universes on the queried controller

The returned object has the following structure

- 428 -

API v3

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example
type integer 1
name string "DMX"

disabled boolean (whether the output has been disabled
via an Action) true

universes array (Universe objects) {"key":{"index":1},"name":"1"},{"key":
{"index":2},"name":"2"}

dmx_
proxy DMX Proxy Object (where appropriate) { "ip_address": "192.168.1.17", "name": "Con-

troller 1" }

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

JavaScript
get_protocols(callback)

Returns all the universes on the queried controller

The returned object has the following structure

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example

- 429 -

Pharos Designer User Manual

type integer 1
name string "DMX"

disabled boolean (whether the output has been dis-
abled via an Action) true

universes array (Universe objects) [{"key":{"index":1},"name":"1"},{"key":
{"index":2},"name":"2"}]

dmx_
proxy DMX Proxy Object (where appropriate)

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

Output
Returns the levels being output from the queried controller. Show

Lua
get_dmx_universe(idx)

get_artnet_universe(idx)

get_pathport_universe(idx)

get_sacn_universe(idx)

l idx is the required universe number

get_kinet_universe(power_supply_num, port_num)

l power_supply_num is the power supply to return the output from
l port_num is the port to return the output from

- 430 -

API v3

These all return a Universe object, which has the following function

get_channel_value(chnl)

l chnl is the channel to get the value from

Example:

uni = get_dmx_universe(1) -- get DMX Universe 1

level = uni:get_channel_value(1) -- get channel 1 from the returned universe

HTTP
GET /api/output?universe=universeKey

l universeKey is a string in the form protocol:index for DMX, Pathport, sACN and Art-Net, pro-
tocol:kinetPowerSupplyNum:kinetPort for KiNET and protocol:remoteDeviceType:remoteDeviceNum for
RIODMX.

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

Example:

GET /api/output?universe=dmx:1

GET /api/output?universe=rio-dmx:rio44:1

The returned object has the following structure

Property Return Type Return Example
channels array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

disabled boolean (whether the output has been disabled
via an Action) true

proxied_
tpc_name

string (only if controller is LPC, universe is DMX
2, DMX Proxy has been enabled and the TPC is
offline)

'Controller 2'

JavaScript
get_output(universeKey, callback)

Argument Type Example

universekey string or an object containing protocol and either index, kinet_power_supply_num
and kinet_port or remote_device_type and remote_device_num dmx:1

l universeKey can be either a string, or an object containing protocol and either index, kinet_power_supply_
num and kinet_port or remote_device_type and remote_device_num as received from get_protocols

Returns an object with the same structure as in the HTTP call

Input
Returns the inputs on the queried controller. Show

Lua

- 431 -

Pharos Designer User Manual

get_input(idx)

Argument Type Example
idx integer 1

Returns the value of the controllers input as a boolean or integer

Example:

in1 = get_input(1)

if in1 == true then

log("Input 1 is digital and high")

elseif in1 == false then

log("Input 1 is digital and low")

else

log("Input 1 is analog at " .. in1)

get_dmx_input(chnl)

Argument Type Example
chnl integer 1

l chnl is the required channel number

Returns the value of the DMX input at channel chnl as an integer

HTTP
GET /api/input

The returned object has the following structure

Property Return
Type Return Example

gpio

array (of
Input
objects, on
LPC or
TPC+EXT)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"type":"Contact Clos-
ure","value":true},{"input":3,"type":"Contact Closure","value":true},{"input":4,"-
type":"Contact Closure","value":true},{"input":5,"type":"Contact
Closure","value":true},{"input":6,"type":"Contact Closure","value":true},{"input":7,"-
type":"Contact Closure","value":true},{"input":8,"type":"Contact Clos-
ure","value":true}]

dmxIn

object
(DMX Input
object, if
DMX Input
is
configured)

[0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

The Input object has the following properties:

Property Return Type Return Example

- 432 -

API v3

input integer 1
type string ('Analog', 'Digital', 'Contact Closure') "Contact Closure"
value integer or bool (depends on type) true

The DMX Input object has the following properties:

Property Return Type Return Example

error string (if DMX Input is configured but no
DMX is received) "No DMX received"

dmxInFrame array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

JavaScript
Not currently available.

Trigger
Returns the triggers in the project. Show

Lua
Not currently available.

HTTP
GET /api/trigger

The returned object has the following structure

triggers array (of Trigger objects)

The Trigger object has the following properties:

Property Return Type Return Example
type string "Startup"
num integer 1
name string "Startup"
trigger_text string "At startup"
conditions array (of Condition objects) [{"text":"Before 12:00:00 every day"}]
actions array (of Action objects [{"text":"Start Timeline 1"}]

The Condition and Action objects have the following properties:

Property Return Type Return Example
text string "Start Timeline 1"

JavaScript
Not currently available.

Lua Variable
Returns the current value of the specified Lua variable. Show

- 433 -

Pharos Designer User Manual

Lua
Not currently available.

HTTP
GET /api/lua?variables=luaVariables

Argument Type Example
luaVariables string or comma separated list 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

JavaScript
get_lua_variables(luaVariables, callback)

Argument Type Example
luaVariables string or array 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

Example:

Query.get_lua_variables("myVar", function(lua){

var value = lua.myVar

}

Trigger Variable
Returns the value of a variables from the trigger that ran the script. Show

Lua
get_trigger_variable(idx)

Argument Type Example
idx integer 1

Returns the trigger variable at idx as a Variant object.

Example:

-- Use with a TPC Colour Move Trigger

red = get_trigger_variable(1).integer

green = get_trigger_variable(2).integer

blue = get_trigger_variable(3).integer

-- Use with Serial Input "<s>\r\n"

input = get_trigger_variable(1).string

- 434 -

API v3

HTTP
Not currently available.

JavaScript
Not currently available.

Resources
Use to locate resources in the controller's memory. Show

Lua
get_resource_path(filename)

Argument Type Example
filename string 'settings.txt'

Returns a path to the resource filename.

Example:

dofile(get_resource_path("my_lua_file.lua"))

HTTP
Not currently available.

JavaScript
Not currently available.

Content Target
Returns information about a Content Target in the project. Show

Lua
On a VLC

get_content_target(compositionNum)

On a VLC+

get_content_target(compositionNum, type)

l compositionNum is the usernumber of the composition to return
l type is the type of target within the composition to return (PRIMARY, SECONDARY, OVERLAY_1,
OVERLAY_2)

Returns a Content Target object with the following properties:

master_intensity_level Variant
rotation_offset (VLC+ only) float
x_position_offset (VLC+ only) float

- 435 -

Pharos Designer User Manual

y_position_offset (VLC+ only) float

Example:

target = get_content_target(1)

current_level = target.master_intensity_level

target = get_content_target(1,PRIMARY)

current_angle = target.rotation_offset

HTTP
Not currently available.

JavaScript
Not currently available.

API Actions
Below are the ways of changing properties or changing output on the controller. show

Start Timeline
Start a timeline in the project Show

Lua
get_timeline(timelineNum):start()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "start",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.start_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

- 436 -

API v3

Start Scene
Start a scene in the project Show

Lua
get_scene(sceneNum):start()

Argument Type Example
sceneNum integer 1

HTTP
POST /api/scene

{

"action": "start",

"num": sceneNum

}

Argument Type Example
sceneNum integer 1

JavaScript
Query.start_scene({ "num": sceneNum}, callback)

Argument Type Example
sceneNum integer 1

Release Timeline
Release a timeline in the project Show

Lua
get_timeline(timelineNum):release([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "release",

"num": timelineNum[,

- 437 -

Pharos Designer User Manual

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.release_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Release Scene
Release a scene in the project Show

Lua
get_scene(sceneNum):release([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

{

"action": "release",

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.release_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

- 438 -

API v3

Toggle Timeline
Toggle a timeline in the project (if it is running, stop it, and if it is not running, start it) Show

Lua
get_timeline(timelineNum):toggle([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "toggle",

"num": timelineNum[,

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.toggle_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Toggle Scene
Toggle a scene in the project (if it is running, stop it, and if it is not running, start it) Show

Lua
get_scene(sceneNum):toggle([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

- 439 -

Pharos Designer User Manual

{

"action": "toggle",

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.toggle_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

Pause Timeline
Pause a timeline in the project Show

Lua
get_timeline(timelineNum):pause()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "pause",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.pause_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

- 440 -

API v3

Resume Timeline
Resume a timeline in the project Show

Lua
get_timeline(timelineNum):resume()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "resume",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.resume_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Pause All
Pause all timelines in the project Show

Lua
pause_all()

HTTP
POST /api/timeline

{

"action": "pause"

}

JavaScript
Query.pause_all(callback)

- 441 -

Pharos Designer User Manual

Resume All
Resume all timelines in the project Show

Lua
resume_all()

HTTP
POST /api/timeline

{

"action": "resume"

}

JavaScript
Query.resume_all(callback)

Release All
Release all timelines, scenes or timelines, scenes and overrides in the project Show

Lua
release_all([fade,] [group])

release_all_timelines([fade,] [group])

release_all_scenes([fade,] [group])

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

HTTP
POST /api/release_all

POST /api/timeline

POST /api/scene

{

"action": "release"[, (not required for release all)

"group": group][,

"fade": fade]

}

Argument Type Example

- 442 -

API v3

fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

JavaScript
release_all_timelines({["fade": fade]}, callback)

release_all_scenes({["fade": fade]}, callback)

release_all({ ["fade": fade,] ["group": group] }, callback)

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

Set Timeline Rate
Set the rate of a timeline in the project Show

Lua
get_timeline(timelineNum):set_rate(rate)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

HTTP
POST /api/timeline

{

"action": "set_rate",

"num": timelineNum,

"rate": rate

}

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_rate({"num": timelineNum, "rate": rate }, callback)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

- 443 -

Pharos Designer User Manual

Set Timeline Position
Set the position of a timeline in the project Show

Lua
get_timeline(timelineNum):set_position(position)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

HTTP
POST /api/timeline

{

"action": "set_position",

"num": timelineNum,

"position": position

}

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_position({"num": timelineNum, "position": position }, callback)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

Enqueue Trigger
Fire a trigger in the project Show

Lua
enqueue_trigger(num[,var...])

Argument Type Example
num - the trigger number to enqueue integer 1
var... - 0 or more variables to pass to the trigger comma separated variables 1,2,"string"

Example

enqueue_trigger(1,1,2,"string")

- 444 -

API v3

HTTP
POST /api/trigger

{

"num": num[,

"var": var...][,

"conditions": test_conditions]

}

Argument Type Example
num integer 1
var... comma separated variables 1,2,"string"
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger
l test_conditions - Should the conditions on the trigger be tested?

JavaScript
Query.fire_trigger({"num": num[, "var": var...][, "conditions": test_conditions]
}, callback)

Argument Type Example
num integer 1
var... comma separated variables '1,2,"string"'
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger. If passingmultiple variables, they must be a single string sur-
rounded by single quotes ('), string variables should be surrounded by double quotes (").

l test_conditions - Should the conditions on the trigger be tested?

Run Script
Run a script or parse into the command line on the controller Show

Lua
Not currently available.

HTTP
POST /api/cmdline

{

"input": chunk,

}

- 445 -

Pharos Designer User Manual

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

JavaScript
Query.run_command({ "input": chunk }, callback)

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

Hardware Reset
Reset the controller (power reboot) Show

Lua
Not currently available.

HTTP
POST /api/reset

JavaScript
Not currently available.

Master Intensity
Master the intensity of a group or content target (applied as amultiplier to output levels) Show

Lua
Non-VLC

get_group(groupNum):set_master_intensity(level[, fade[, delay]])

VLC

get_content_target():set_master_intensity(level, [fade, [delay]])

VLC+

get_content_target(compositionNum, type):set_master_intensity(level, [fade,
[delay]])

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) PRIMARY, SECONDARY, TARGET_3 ... TARGET_8
level float or integer (0-255) 128 or 0.5
fade float 2.0

- 446 -

API v3

delay float 2.0

Example:

get_group(1):set_master_intensity(128,3) -- master group 1 to 50% (128/255 = 0.5)
in 3 seconds)

HTTP
Non-VLC

POST /api/group

{

"action": "master_intensity",

"num": groupNum,

"level": level,

["fade": fade,]

["delay": delay]

}

VLC/VLC+

POST /api/content_target

{

"action": "master_intensity",

"level": level,

["fade": fade,]

["delay": delay,]

"type": type

}

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', target_3' ... 'target_8'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

JavaScript
Non-VLC

- 447 -

Pharos Designer User Manual

master_intensity({ "num": groupNum, "level": level, ["fade": fade,] ["delay":
delay] }, callback)

VLC/VLC+

master_content_target_intensity({ "type":type, "level": level, ["fade": fade,] ["delay": delay] }, callback)

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', target_3' ... 'target_8'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

Example:

Query.master_intensity({"num":1,"level":"50:100","fade":3) -- master group 1 to
50% (50/100 = 0.5) in 3 seconds)

Note:Group 0 will master the intensity of the 'All Fixtures' group

Set RGB
Set the Intensity, Red, Green, Blue levels for a fixture or group. Show

Lua
get_fixture_override(num)

get_group_override(num)

:set_irgb(intensity, red, green, blue, [fade, [path]])

:set_intensity(intensity, [fade, [path]])

:set_red(red, [fade, [path]])

:set_green(green, [fade, [path]])

:set_blue(blue, [fade, [path]])

:set_temperature(temperature, [fade, [path]])

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

- 448 -

API v3

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:set_rgb(255, 255, 0, 0) -- Set the fixture to Red

HTTP
PUT /api/override

{

"target": target,

"num": num,

["intensity": intensity,]

["red": red,]

["green": green,]

["blue": blue,]

["temperature": temperature,]

["fade": fade,]

["path": path]

}

Argument Type Example

target string (from
options) "group", "fixture"

num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Javascript
set_group_override({ "num": num, ["intensity": intensity,] ["red": red,] ["green":
green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,] ["path":
path] }, callback)

- 449 -

Pharos Designer User Manual

set_fixture_override({ "num": num, ["intensity": intensity,] ["red": red,]
["green": green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,]
["path": path] }, callback)

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

Query.set_fixture_override({ "num": 1, "intensity": 255, "red": 255, "green": 0,
"blue": 0});

Note:Group 0 will set the levels of the 'All Fixtures' group

Clear RGB
Remove any overrides on fixtures or groups. Show

Lua
get_fixture_override(num)

get_group_override(num)

:clear([fade])

clear_all_overrides([fade])

Argument Type Example
num - group or fixture integer 1
fade float 2.0

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:clear() -- Clear the override on fixture 1

HTTP
DELETE /api/override

{

- 450 -

API v3

["target": target,]

["num": objectNum,]

["fade": fade]

}

If num is not included, target is ignored and all overrides are cleared.

Argument Type Example
target string (from options) "group" or "fixture"
num - group or fixture integer 1
fade float 2.0

JavaScript
clear_group_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_fixture_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_overrides({ ["fade": fade] }, callback)

Argument Type Example
num integer 1
fade float 2.0

Example:

Query.clear_overrides({"fade":3})

Set Text Slot
Set the value of a text slot used in the project. Show

Lua
set_text_slot(name, value)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

set_text_slot("myTextSlot", "Hello World!")

HTTP
PUT /api/text_slot

{

"name": name,

- 451 -

Pharos Designer User Manual

"value": value

}

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

JavaScript
set_text_slot({"name": name, "value": value}, callback)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

Query.set_text_slot("name:"myTextSlot", "value":"Hello World!")

Set BPS Button LED
Set the effect and intensity on BPS button LEDS. Show

Lua
get_bps(num):set_led(button, effect, [intensity], [fade])

Argument Type Example
num integer 1
button integer 1

effect OFF, ON, SLOW_FLASH, FAST_FLASH, DOUBLE_FLASH, BLINK, PULSE,
SINGLE, RAMP_ON, RAMP_OFF

FAST_
FLASH

intensity integer (1-255) 255
fade float 0.0

Example:

get_bps(1):set_led(1,FAST_FLASH,255) -- Set button 1 on BPS 1 to Fast Flash at
full intensity

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

- 452 -

API v3

Set Touch Control Value
Set the value on a Touch Slider or Color Picker. Show

Lua
set_control_value(name, [index,] value[, emitChange])

Argument Type Example
name - control Key string "slider001"
index - axis of movement (slider has 1, colour picker has 3) integer (1-3) (default 1) 1
value integer (0-255) 128
emitChange boolean (default false) false

Example:

set_control_value("slider001", 1, 128) -- set slider001 to half and don't fire
associated triggers

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Control State
Set the state on a Touch control. Show

Lua
set_control_state(name, state)

Argument Type Example
name - control Key string "slider001"
state - the state name form Interface string (from options in Interface) "Green"

Example:

set_control_state("slider001", "Green") -- set slider001 to a state called
"Green"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

- 453 -

Pharos Designer User Manual

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Control Caption
Set the caption on a Touch control. Show

Lua
set_control_caption(name, caption)

Argument Type Example
name - control Key string "button001"
caption - text to display string "On"

Example:

set_control_caption("button001", "On") -- set button001's caption to "On"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set Touch Page
Change the page on a Touch interface. Show

Lua
set_interface_page(number[, transition])

Argument Type Example
number integer 4
transition SNAP, PAN_LEFT, PAN_RIGHT PAN_LEFT

Example:

set_interface_page(4) -- change the page on the TPC's interface to page 4

HTTP
Not currently available.

- 454 -

API v3

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Disable Page
Disable the touchscreen. Show

Lua
set_interface_enabled([enable])

Argument Type Example
enable boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Lock Touch Device
Lock the Touch Device (requires Lock code to be set within Interface). Show

Lua
set_interface_locked([lock])

Argument Type Example
lock boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

- 455 -

Pharos Designer User Manual

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Transition Content Target
Move or rotate a Content Target. Show

Lua
get_content_target(compositionNum, type)

:transition_rotation([offset], [count], [period], [delay], [useShortestPath])

:transition_x_position([offset], [count], [period], [delay])

:transition_y_position([offset], [count], [period], [delay])

Argument Type Example
compositionNum integer 1
type PRIMARY, SECONDARY, TARGET_3 ... TARGET_8 PRIMARY
offset integer 10
count integer 1
period integer 5
delay integer 0
useShortestPath boolean (default false) false

Example:

tar = get_composition_target(1,PRIMARY)

tar:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds

tar:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds

tar:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

- 456 -

API v3

Use Run Script or Enqueue Trigger

Transition Adjustment Target
Move or rotate a Adjustment Target. Show

Lua
get_adjustment(num)

:transition_rotation([offset], [count], [period], [delay], [useShortestPath])

:transition_x_position([offset], [count], [period], [delay])

:transition_y_position([offset], [count], [period], [delay])

Argument Type Example
num integer 1
offset integer 10
count integer 1
period integer 5
delay integer 0
useShortestPath boolean (default false) false

Example:

tar = get_adjustment(1)

tar:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds

tar:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds

tar:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Beacon Controller
Beacons the controller (flashes Status LEDs or screen). Show

Lua
Not currently available.

- 457 -

Pharos Designer User Manual

HTTP
POST /api/beacon

JavaScript
toggle_beacon(callback)

Example:

Query.toggle_beacon()

Output To Log
Writes amessage to the controller's Log. Show

Lua
log([level,]message)

Argument Type Example

level option (LOG_DEBUG, LOG_TERSE, LOG_NORMAL, LOG_EXTENDED,
LOG_VERBOSE, LOG_CRITICAL, default LOG_NORMAL)

LOG_
CRITICAL

message string
"Some
message to
log."

Example:

log(LOG_CRITICAL, "This is a criticial message!") -- logs themessage at Critical log level

log("This is a normal message.") -- logs themessage at Normal log level.

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Send Variables To Web Interface
Sends data to the web interface in a JSON Object. Show

Lua
push_to_web(name, value)

Argument Type Example
name string "myVar"

- 458 -

API v3

value variable "Some value"

Example:

myVar = 15

push_to_web("myVar", myVar) -- will push the object {"myVar": 15}

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Park A Channel
Parks an output channel at a specified level. Show

Lua
Universe:park(channel, value)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1
value integer (0-255) 128

Example:

get_dmx_universe(1):park(1,128) -- Park channel 1 of DMX Universe 1 at 128 (50%)

HTTP
POST /api/channel

{

"universe": universeKey,

"channels": channelList,

"level": level

}

Argument Type Example

universeKey
string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

"dmx:1"

- 459 -

Pharos Designer User Manual

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

channelList comma separated list(1-512) "1-3,5"
level integer (0-255) 128

JavaScript
park_channel({ "universe": universeKey, "channels": channelList, "level": level },
callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"
value integer (0-255) 128

Example:

park_channel({ "universe": "dmx:1","channels": 1, "level":128}); // Park channel
1 of DMX Universe 1 at 128 (50%)

Unpark A Channel
Unparks an output channel. Show

Lua
Universe:unpark(channel)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1

Example:

get_dmx_universe(1):unpark(1) -- Unpark channel 1 of DMX Universe 1 (it will go
back to normal output levels)

HTTP
DELETE /api/channel

{

"universe": universeKey,

"channels": channelList

}

- 460 -

API v3

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

JavaScript
park_channel({ "universe": universeKey, "channels": channelList }, callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

Example:

park_channel({ "universe": "dmx:1","channels": 1}); //Unpark channel 1 of DMX Uni-
verse 1 (it will go back to normal output levels)

Disable an Output
Unparks an output channel. Show

Lua
disable_output(protocol)

enable_output(protocol)

Argument Type Example
protocol option (DMX, PATHPORT, ARTNET, KINET, SACN, DVI, RIO_DMX) DMX

Example:

disable_output(DMX) -- Disable the DMX output from the controller

HTTP
POST /api/output

{

"protocol": protocol,

"action": action

- 461 -

Pharos Designer User Manual

}

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"
action string ("enable", "disable") "disable"

JavaScript
disable_output({ "protocol": protocol }, callback)

enable_output({ "protocol": protocol }, callback)

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"

Example:

disbale_output({ "protocol": "dmx"}); // Disable the DMX output

enable_output({ "protocol": "art-net"}); // Enable the Art-Net Output

Set Timeline Source Bus
Set the time source for a timeline. Show

Lua
Timeline:set_default_source()

Timeline:set_timecode_source(timecodeBus[, offset])

Timeline:set_audio_source(audioBus, band, channel[,peak])

Argument Type Example
Timeline Timeline Object get_timeline(1)
timecodeBus TCODE_1 ... TCODE_6 TCODE_1
audioBus AUDIO_1 ... AUDIO_4 AUDIO_1
band integer (0=volume) 0
channel LEFT, RIGHT or COMBINED LEFT
peak boolean (default false) false

Example:

get_timeline(1):set_timecode_source(TCODE_1) -- Set the timecode source of timeline 1 to timecode bus 1

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

- 462 -

API v3

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Enable Timecode Bus
Enables or disables a timecode bus. Show

Lua
set_timecode_bus_enabled(bus[, enable])

l bus is the timecode bus to enable or disable (TCODE_1 ... TCODE_6)
l enable determines whether the bus should be enabled or disabled (boolean, default true)

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

API Subscriptions
Subscriptions allow data to be pushed to the web interface whenever there is a change within the project. show

Subscribe Timeline Status
Subscribes to changes in the timeline status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_timeline_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true

- 463 -

Pharos Designer User Manual

position number (milliseconds) 5000

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_timeline_status(function(t){

alert(t.num + ": " + t.state)

})

Subscribe Scene Status
Subscribes to changes in the scene status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_scene_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_scene_status(function(s){

alert(s.num + ": " + s.state)

})

Subscribe Group Status
Subscribes to changes in group level, as set by theMaster Intensity action (any change is pushed to the interface).
Show

Lua
Not currently available.

- 464 -

API v3

HTTP
Not currently available.

JavaScript
subscribe_group_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
name string 'Group 1'
level integer (0-255) 128

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_group_status(function(g){

alert(g.num + ": " + g.level)

})

Subscribe Remote Device Status
Subscribes to changes in Remote Device Online/Offline Status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_remote_device_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
type string ('RIO 08', 'RIO 44', 'RIO 80','RIO D', 'RIO A', 'BPS') 'Group 1'
online boolean true
serial string (of serial number) '001001'

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_remote_device_status(function(r){

- 465 -

Pharos Designer User Manual

alert(r.num + ": " + r.level)

})

Subscribe Beacon
Subscribes to Beacons (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_beacon(callback)

Returns an object with the following properties:

Property Return type Return Example
on boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_beacon(function(b){

if (b.on){

alert("Beacon Turned On")

else {

alert("Beacon Turned Off")

}

})

Subscribe Lua
The receiver for the push_to_web() Lua function. Show

Lua
Not currently available.

HTTP
Not currently available.

- 466 -

API v3

JavaScript
subscribe_lua(callback)

Returns an object with the following properties:

Property Return type Return Example
key as defined by push_to_web() value

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_lua(function(l){

key = Object.keys(l)[0]

value = l.key

alert(key + ": " + value)

})

API Objects
Below are the helper functions and objects in the project. show

Variant
A Lua object that allows a type and range to be associated with a variable. Show

Lua
See here.

HTTP
Not currently available.

JavaScript
Not currently available.

DateTime
A Lua object containing time data. Show

Lua
The DateTime object contains the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (0-11) 5
.monthday integer (0-30) 8

- 467 -

Pharos Designer User Manual

.weekday integer(0-6) 1

.hour integer(0-23) 13

.minute integer (0-59) 21

.second integer (0-59) 46

.utc_timestamp integer 1494249706

.time_string string

.date_string string

HTTP
Not currently available.

JavaScript
Not currently available.

Printing An Enum
Lua functions to convert integers returned from some functions as text. Show

Lua
digital_input_to_string()

button_state_to_string()

Examples:

log(digital_input_to_string(get_input(1)))

str = button_state_to_string(get_bps(1):get_state(1))

HTTP
Not currently available.

JavaScript
Not currently available.

- 468 -

API v2

API V2
The Pharos system includes multiple API options:

l Lua (used internally with Conditions and Actions)
l HTTP (used with external devices/software to communicate with a controller)
l JavaScript (used with CustomWeb Interfaces)

These APIs have been unified to simplify their use as much as possible.

Glossary:

l Object - A collection of key value pairs e.g. "name" = "Controller 1" (syntax will differ between languages).
l String - A series of characters e.g."Th1s_is-4(string)"
l Number - Any whole or floating point(decimal) number e.g. 1,2,3,1.5,12.3456)
l Integer - A whole number
l Bounded integer - An integer with a range (e.g. 10:100 = 10%)
l Float/real/number - A decimal number (e.g. 3.2 or 1.0)
l JSON - (JavaScript Object Notation) a way of transferring information in the form of a JavaScript Object
l GET - A HTTP method to request data from a server
l POST - A HTTP method to request data in amore secure way
l PUT - A HTTP method to send data to a server
l Variant - See here
l [] - anything shownwithin square brackets is optional. The square brackets should be omitted if the optional
section is used.

l callback - A function to run when the javascript function has been run, or a reply has been received.

HTTP Requests

Please note, when a HTTP POST request is sent, it must include a Content-Type header set to "application/json",
otherwise it will be treated as invalid.

API Queries
Below are the ways of getting data from the controller. show

System
Returns data about the controller. show

Lua
The system namespace has the following properties:

Property Return type Return Example
.hardware_type string "lpc"
.channel_capacity integer 512
.serial_number string "006321"
.memory_total string "12790Kb"
.memory_used string "24056Kb"
.memory_free string "103884Kb"

- 469 -

Pharos Designer User Manual

.storage_size string "1914MB"

.bootloader_version string "0.9.0"

.firmware_version string "2.7.0"

.reset_reason string "Software Reset"

.last_boot_time DateTime object

.ip_address string "192.168.1.3"

.subnet_mask string "255.255.255.0"

.default_gateway string "192.168.1.3"

Example:

capacity = system.channel_capacity

boot_time = system.last_boot_time.time_string

HTTP
GET /api/system

Returns an object with the following properties:

Property Return type Return Example
hardware_type string "LPC"
channel_capacity integer 512
serial_number string "006321"
memory_total string "12790Kb"
memory_used string "24056Kb"
memory_free string "103884Kb"
storage_size string "1914MB"
bootloader_version string "0.9.0"
firmware_version string "2.7.0"
reset_reason string "Software Reset"
last_boot_time string "01 Jan 2017 09:09:38"
ip_address string "192.168.1.3"
subnet_mask string "255.255.255.0"
default_gateway string "192.168.1.3"

JavaScript
get_system_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_system_info(function(system){

var capacity = system.channel_capacity

}

- 470 -

API v2

Project
Returns data about the project. Show

Lua
get_current_project()

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

project_name = get_current_project().name

HTTP
GET /api/project

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"
upload_date string "2017-01-30T15:19:08"

JavaScript
get_project_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_project_info(function(project){

var author = project.author

}

Replication
Returns data about the install replication. Show

Lua
get_current_replication()

- 471 -

Pharos Designer User Manual

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

rep_name = get_current_replication().name

HTTP
Not currently available.

JavaScript
Not currently available.

Time
Returns data about the time stored in the controller. Show

Lua
The time namespace has the following functions which return a DateTime object

l get_current_time()
l get_sunrise()
l get_sunset()
l get_civil_dawn()
l get_civil_dusk()
l get_nautical_dawn()
l get_nautical_dusk()
l get_new_moon()
l get_first_quarter()
l get_full_moon()
l get_third_quarter()

and the following properties

Property Return Type Return Example
is_dst boolean
gmt_offset string

Each function returns a DateTime object, with the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (1-12) 5
.monthday integer (1-31) 8
.weekday integer(1-7) 1
.hour integer(0-23) 13

- 472 -

API v2

.minute integer (0-59) 21

.second integer (0-59) 46

.utc_timestamp integer 1494249706

.time_string string

.date_string string

Example:

current_hour = time.get_current_time().hour

HTTP
GET /api/time

Returns an object with the following properties:

Property Return Type Return Example
datetime string "01 Feb 2017 13:44:42"
local_time integer (controller's local time inmilliseconds) 1485956682
uptime integer (time since last boot) 493347

JavaScript
get_current_time(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_current_time(function(time){

var uptime = time.uptime

}

Timeline
Returns data about the timelines in the project and their state on the controller. Show

Lua
get_timeline(timelineNum)

Returns a single Timeline object for the timeline with user number timelineNum.

The returned object has the following properties

Property Return Type Return
Example

name string "Timeline 1"
group string ('A', 'B', 'C', 'D','') 'A'
length integer 10000
source_
bus

integer (equivalent to constants: DEFAULT, TCODE_1 ... TCODE_6, AUDIO_
1 ... AUDIO_4) 1

- 473 -

Pharos Designer User Manual

timecode_
format string "SMPTE30"

audio_
band integer (0 is equivalent to constant VOLUME) 0

audio_
channel integer (equivalent to constants: LEFT, RIGHT or COMBINED) 1

audio_
peak boolean false

time_off-
set integer 5000

state integer (equivalent to constants: Timeline.NONE, Timeline.RUNNING,
Timeline.PAUSED, Timeline.HOLDING_AT_END, Timeline.RELEASED) 1

onstage boolean true
position integer 5000

priority
integer (equivalent to constants: HIGH_PRIORITY, ABOVE_NORMAL_
PRIORITY, NORMAL_PRIORITY, BELOW_NORMAL_PRIORITY or LOW_
PRIORITY)

0

Example:

tl = get_timeline(1)

name = tl.name

state = tl.state

if (tl.source_bus == TCODE_1) then

-- do something

end

HTTP
GET /api/timeline[?num=timelineNumbers]

l num can be used to filter which timelines are returned and can be a single number or a string representing the
required timelines (e.g. "1,2,5-9")

Returns an object with the following properties:

timelines array of timeline objects

Each timeline object contains the following properties:

Property Return Type Return Example
num integer 1
name string "Timeline 1"
group string('A', 'B', 'C', 'D' or empty) "A"
length integer 10000
source_bus string ('internal', 'timecode_1',...'timecode_6', 'audio_1',...'audio_4') 100

- 474 -

API v2

timecode_format string "SMPTE30"
audio_band integer (0 is volume band) 1
audio_channel string ('left', 'right', 'combined') "combined"
audio_peak boolean false
time_offset integer 5000
state string ('none', 'running', 'paused', 'holding_at_end', 'released') "running"
onstage boolean true
position integer 10000
priority string ('high', 'above_normal', 'normal', 'below_normal', 'low') "normal"

JavaScript
get_timeline_info(callback[, num])

l num can be used to filter which timelines are returned and is defined as a JSON object which can contain a
single number or a string representing the required timelines (e.g. "1,2,5-9")

Returns an array of timelines in the sameway as the HTTP call

Example:

Query.get_timeline_info(function(t){

var name = t.timelines[0].name //name of the first timeline

}, {"num":"1-4"})

Scene
Returns data about the Scenes in the project and their state on the controller. Show

Lua
get_scene(sceneNum)

Returns a single Scene object for the Scene with user number SceneNum.

The returned object has the following properties

Property Return Type Return Example
name string "Scene 1"
state string ('none', 'started') "none"
onstage boolean false

Example:

scn = get_scene(1)

name = scn.name

state = scn.state

- 475 -

Pharos Designer User Manual

HTTP
GET /api/scene[?num=sceneNumbers]

num can be used to filter which scenes are returned and can be a single number or array

Returns an object with the following properties:

scenes array of scene objects

Each scene object contains the following properties:

Property Return Type Return Example
name string "Scene 1"
num integer 1
state string ('none', 'started') "none"
onstage boolean false

JavaScript
get_scene_info(callback[, num])

filter may contain a num property which is used to filter which scenes are returned

Returns an array of scenes in the sameway as the HTTP call

Example:

Query.get_scene_info(function(s){

var name = s.scenes[0].name //name of the first timeline

}, {"num":"1-4"})

Group
Returns data about the groups in the project. Show

Lua
get_group(groupNum)

Returns aGroup object for the group with user number groupNum.

The returned object has the following properties:

Property Return Type Return Example
name string "Group 1"
master_intensity_level Variant

Example:

grp = get_group(1)

name = grp.name

- 476 -

API v2

HTTP
GET /api/group[?num=groupNumbers]

num can be used to filter which groups are returned and can be a single number or array

Returns an object with the following properties:

groups array of group objects

Each group object contains the following properties:

Property Return Type Return Example
num integer (only included for user created groups) 1
name string "Group 1"
level integer (0-100) 100

JavaScript
get_group_info(callback[, num])

filter may contain a num property which is used to filter which groups are returned

Returns an array of groups in the sameway as the HTTP call

Example:

Query.get_group_info(function(g){

var name = g.groups[0].name //name of the first timeline

}, {"num":"1-4"})

Note:Group 0 will return data about the 'All Fixtures' group

Controller
Returns data about the controller. Show

Lua
get_current_controller()

Returns an object for the containing the following properties:

Property Return Type Return Example
number integer 1
name string "Controller 1"

Example:

cont = get_current_controller()

name = cont.name

is_controller_online(controllerNumber)

- 477 -

Pharos Designer User Manual

Returns true if the controller with user number controllerNum has been discovered, and false otherwise

Example:

if (is_controller_online(2)) then

log("Controller 2 is online")

else

log("Controller 2 is offline")

end

HTTP
GET /api/controller

Returns an object with the following properties:

controllers array of controller objects (one for each controller in the project)

Each controller object contains the following properties:

Property Return Type Return
Example

num number 1
type string "LPC"
name string "Controller 1"
serial string "009060"
ip_
address

string (if the controller is discovered)/empty (if the controller is not discovered or
is the queried controller)

"192.168.1.3"
or ""

online boolean true

JavaScript
get_controller_info(callback)

Returns an array of controllers in the sameway as the HTTP call

Example:

Query.get_controller_info(function(controller){

var name = controller[0].name // name of the first controller

}

Temperature
Returns data about the controller's temperature. Show

Lua
get_temperature()

- 478 -

API v2

Returns an object with the following properties

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core_temp number (only for LPC X and VLC/VLC+) 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

Example:

temp = get_temperature()

log(temp.ambient_temp)

HTTP
GET /api/temperature

Returns an object with the following properties:

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core1_temp number (only for LPC X and VLC/VLC+) 44
core2_temp number (only for LPC X rev 1 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

JavaScript
get_temperature(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_temperature(function(temp){

var ambient = temp.ambient_temp // ambient temperature of the controller

}

Remote Device
Returns data about the Remote Device/s in the project. Show

Lua
get_rio(type, num):get_input(inputNum)

l type can be RIO80, RIO44 or RIO08
l num is the remote device number
l inputNum is the number of the input

- 479 -

Pharos Designer User Manual

Returns a boolean if the input is set to Digital or Contact Closure, or an integer if the input is set to Analog.

Example:

rio = get_rio(RIO44, 1)

input = rio:get_input(1)

get_bps(num):get_state(buttonNum)

l num is the BPS number
l buttonNum is the number of the button

Returns the state of the button, which can be RELEASED, PRESSED, HELD or REPEAT

Example:

bps = get_bps(1)

btn = bps:get_state(1)

HTTP
GET /api/remote_device

Returns an array of all remote devices in the project.

The returned object has the following structure

remote_devices array of Remote Device objects

Each Remote Device object contains the following properties:

Property Return Type Return Example
num integer 1

type
string ('RIO08', 'RIO44',
'RIO80', 'BPS', 'BPI', 'RIO
A', 'RIO D')

"RIO 44"

serial
array (all discovered serial
number for the address and
type)

["001234"]

outputs

array (of Output objects, only
present for RIO44 and
RIO08 that are on the quer-
ied controller)

[{"output":1,"value":true},{"output":2,"value":true},{"out-
put":3,"value":true},{"output":4,"value":true}]

inputs

array (of Input objects, only
present for RIO44 and
RIO80 that are on the quer-
ied controller)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"-
type":"Contact Closure","value":true},{"input":3,"type":"Contact
Closure","value":true},{"input":4,"type":"Contact Clos-
ure","value":true}]

online boolean (if the remote device
is detected as being online) true

TheOutput object has the following properties:

- 480 -

API v2

Property Return Type Return Example
output integer 1
state boolean (truemeans the output is on, falsemeans it is off) false

The Input object has the following properties:

Property Return Type Return Example
input integer 1
type string ('Analog', 'Digital', 'Contact Closure') 'Digital'
value integer or bool (depends on type) true

JavaScript
get_remote_device_info(callback)

Returns an array of all remote devices in the project with the same properties as in the HTTP call.

Example:

Query.get_remote_device_info(function(remote){

var type = remote[0].type // type of the first remote device

}

Text Slots
Returns data about the text slots in the project. Show

Lua
get_text_slot(slotName)

l slotName is the name of the text slot

Returns the value of slotName

Example:

log(get_text_slot("test_slot"))

HTTP
GET /api/text_slot[?names=slotNames]

slotNames can be used to filter which text slots are returned and can be a single name or array

The returned object has the following structure

text_slots array of Text Slot objects

Each Text Slot object contains the following properties:

Property Return Type Return Example

- 481 -

Pharos Designer User Manual

name string "text"
value string "example"

JavaScript
get_text_slot(callback[, filter])

filter may contain a names property which is used to filter which text slot values are returned

Returns an array of all text slots in the project with the same properties as in the HTTP call.

Example:

Query.get_text_slot(function(text){

var value = text[0].value // value of the first text slot

}, {names: "test_slot1", "test_slot2"})

Get Log
Returns the log from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/log

The returned object has the following structure

Property Return Type
log string (containing the whole log of the controller)

JavaScript
Not currently available.

Protocol
Returns the protocols and universes being output from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/protocol

Returns all the universes on the queried controller

The returned object has the following structure

- 482 -

API v2

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example
type integer 1
name string "DMX"

disabled boolean (whether the output has been disabled
via an Action) true

universes array (Universe objects) {"key":{"index":1},"name":"1"},{"key":
{"index":2},"name":"2"}

dmx_
proxy DMX Proxy Object (where appropriate) { "ip_address": "192.168.1.17", "name": "Con-

troller 1" }

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

JavaScript
get_protocols(callback)

Returns all the universes on the queried controller

The returned object has the following structure

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example

- 483 -

Pharos Designer User Manual

type integer 1
name string "DMX"

disabled boolean (whether the output has been dis-
abled via an Action) true

universes array (Universe objects) [{"key":{"index":1},"name":"1"},{"key":
{"index":2},"name":"2"}]

dmx_
proxy DMX Proxy Object (where appropriate)

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

Output
Returns the levels being output from the queried controller. Show

Lua
get_dmx_universe(idx)

get_artnet_universe(idx)

get_pathport_universe(idx)

get_sacn_universe(idx)

l idx is the required universe number

get_kinet_universe(power_supply_num, port_num)

l power_supply_num is the power supply to return the output from
l port_num is the port to return the output from

- 484 -

API v2

These all return a Universe object, which has the following function

get_channel_value(chnl)

l chnl is the channel to get the value from

Example:

uni = get_dmx_universe(1) -- get DMX Universe 1

level = uni:get_channel_value(1) -- get channel 1 from the returned universe

HTTP
GET /api/output?universe=universeKey

l universeKey is a string in the form protocol:index for DMX, Pathport, sACN and Art-Net, pro-
tocol:kinetPowerSupplyNum:kinetPort for KiNET and protocol:remoteDeviceType:remoteDeviceNum for
RIODMX.

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

Example:

GET /api/output?universe=dmx:1

GET /api/output?universe=rio-dmx:rio44:1

The returned object has the following structure

Property Return Type Return Example
channels array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

disabled boolean (whether the output has been disabled
via an Action) true

proxied_
tpc_name

string (only if controller is LPC, universe is DMX
2, DMX Proxy has been enabled and the TPC is
offline)

'Controller 2'

JavaScript
get_output(universeKey, callback)

Argument Type Example

universekey string or an object containing protocol and either index, kinet_power_supply_num
and kinet_port or remote_device_type and remote_device_num dmx:1

l universeKey can be either a string, or an object containing protocol and either index, kinet_power_supply_
num and kinet_port or remote_device_type and remote_device_num as received from get_protocols

Returns an object with the same structure as in the HTTP call

Input
Returns the inputs on the queried controller. Show

Lua

- 485 -

Pharos Designer User Manual

get_input(idx)

Argument Type Example
idx integer 1

Returns the value of the controllers input as a boolean or integer

Example:

in1 = get_input(1)

if in1 == true then

log("Input 1 is digital and high")

elseif in1 == false then

log("Input 1 is digital and low")

else

log("Input 1 is analog at " .. in1)

get_dmx_input(chnl)

Argument Type Example
chnl integer 1

l chnl is the required channel number

Returns the value of the DMX input at channel chnl as an integer

HTTP
GET /api/input

The returned object has the following structure

Property Return
Type Return Example

gpio

array (of
Input
objects, on
LPC or
TPC+EXT)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"type":"Contact Clos-
ure","value":true},{"input":3,"type":"Contact Closure","value":true},{"input":4,"-
type":"Contact Closure","value":true},{"input":5,"type":"Contact
Closure","value":true},{"input":6,"type":"Contact Closure","value":true},{"input":7,"-
type":"Contact Closure","value":true},{"input":8,"type":"Contact Clos-
ure","value":true}]

dmxIn

object
(DMX Input
object, if
DMX Input
is
configured)

[0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

The Input object has the following properties:

Property Return Type Return Example

- 486 -

API v2

input integer 1
type string ('Analog', 'Digital', 'Contact Closure') "Contact Closure"
value integer or bool (depends on type) true

The DMX Input object has the following properties:

Property Return Type Return Example

error string (if DMX Input is configured but no
DMX is received) "No DMX received"

dmxInFrame array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

JavaScript
Not currently available.

Trigger
Returns the triggers in the project. Show

Lua
Not currently available.

HTTP
GET /api/trigger

The returned object has the following structure

triggers array (of Trigger objects)

The Trigger object has the following properties:

Property Return Type Return Example
type string "Startup"
num integer 1
name string "Startup"
trigger_text string "At startup"
conditions array (of Condition objects) [{"text":"Before 12:00:00 every day"}]
actions array (of Action objects [{"text":"Start Timeline 1"}]

The Condition and Action objects have the following properties:

Property Return Type Return Example
text string "Start Timeline 1"

JavaScript
Not currently available.

Lua Variable
Returns the current value of the specified Lua variable. Show

- 487 -

Pharos Designer User Manual

Lua
Not currently available.

HTTP
GET /api/lua?variables=luaVariables

Argument Type Example
luaVariables string or comma separated list 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

JavaScript
get_lua_variables(luaVariables, callback)

Argument Type Example
luaVariables string or array 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

Example:

Query.get_lua_variables("myVar", function(lua){

var value = lua.myVar

}

Trigger Variable
Returns the value of a variables from the trigger that ran the script. Show

Lua
get_trigger_variable(idx)

Argument Type Example
idx integer 1

Returns the trigger variable at idx as a Variant object.

Example:

-- Use with a TPC Colour Move Trigger

red = get_trigger_variable(1).integer

green = get_trigger_variable(2).integer

blue = get_trigger_variable(3).integer

-- Use with Serial Input "<s>\r\n"

input = get_trigger_variable(1).string

- 488 -

API v2

HTTP
Not currently available.

JavaScript
Not currently available.

Resources
Use to locate resources in the controller's memory. Show

Lua
get_resource_path(filename)

Argument Type Example
filename string 'settings.txt'

Returns a path to the resource filename.

Example:

dofile(get_resource_path("my_lua_file.lua"))

HTTP
Not currently available.

JavaScript
Not currently available.

Content Target
Returns information about a Content Target in the project. Show

Lua
On a VLC

get_content_target(compositionNum)

On a VLC+

get_content_target(compositionNum, type)

l compositionNum is the usernumber of the composition to return
l type is the type of target within the composition to return (PRIMARY, SECONDARY, OVERLAY_1,
OVERLAY_2)

Returns a Content Target object with the following properties:

master_intensity_level Variant
rotation_offset (VLC+ only) float
x_position_offset (VLC+ only) float

- 489 -

Pharos Designer User Manual

y_position_offset (VLC+ only) float

Example:

target = get_content_target(1)

current_level = target.master_intensity_level

target = get_content_target(1,PRIMARY)

current_angle = target.rotation_offset

HTTP
Not currently available.

JavaScript
Not currently available.

API Actions
Below are the ways of changing properties or changing output on the controller. show

Start Timeline
Start a timeline in the project Show

Lua
get_timeline(timelineNum):start()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "start",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.start_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

- 490 -

API v2

Start Scene
Start a scene in the project Show

Lua
get_scene(sceneNum):start()

Argument Type Example
sceneNum integer 1

HTTP
POST /api/scene

{

"action": "start",

"num": sceneNum

}

Argument Type Example
sceneNum integer 1

JavaScript
Query.start_scene({ "num": sceneNum}, callback)

Argument Type Example
sceneNum integer 1

Release Timeline
Release a timeline in the project Show

Lua
get_timeline(timelineNum):release([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "release",

"num": timelineNum[,

- 491 -

Pharos Designer User Manual

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.release_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Release Scene
Release a scene in the project Show

Lua
get_scene(sceneNum):release([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

{

"action": "release",

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.release_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

- 492 -

API v2

Toggle Timeline
Toggle a timeline in the project (if it is running, stop it, and if it is not running, start it) Show

Lua
get_timeline(timelineNum):toggle([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "toggle",

"num": timelineNum[,

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.toggle_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Toggle Scene
Toggle a scene in the project (if it is running, stop it, and if it is not running, start it) Show

Lua
get_scene(sceneNum):toggle([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

- 493 -

Pharos Designer User Manual

{

"action": "toggle",

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.toggle_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

Pause Timeline
Pause a timeline in the project Show

Lua
get_timeline(timelineNum):pause()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "pause",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.pause_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

- 494 -

API v2

Resume Timeline
Resume a timeline in the project Show

Lua
get_timeline(timelineNum):resume()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "resume",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.resume_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Pause All
Pause all timelines in the project Show

Lua
pause_all()

HTTP
POST /api/timeline

{

"action": "pause"

}

JavaScript
Query.pause_all(callback)

- 495 -

Pharos Designer User Manual

Resume All
Resume all timelines in the project Show

Lua
resume_all()

HTTP
POST /api/timeline

{

"action": "resume"

}

JavaScript
Query.resume_all(callback)

Release All
Release all timelines, scenes or timelines, scenes and overrides in the project Show

Lua
release_all([fade,] [group])

release_all_timelines([fade,] [group])

release_all_scenes([fade,] [group])

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

HTTP
POST /api/release_all

POST /api/timeline

POST /api/scene

{

"action": "release"[, (not required for release all)

"group": group][,

"fade": fade]

}

Argument Type Example

- 496 -

API v2

fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

JavaScript
release_all_timelines({["fade": fade]}, callback)

release_all_scenes({["fade": fade]}, callback)

release_all({ ["fade": fade,] ["group": group] }, callback)

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

Set Timeline Rate
Set the rate of a timeline in the project Show

Lua
get_timeline(timelineNum):set_rate(rate)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

HTTP
POST /api/timeline

{

"action": "set_rate",

"num": timelineNum,

"rate": rate

}

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_rate({"num": timelineNum, "rate": rate }, callback)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

- 497 -

Pharos Designer User Manual

Set Timeline Position
Set the position of a timeline in the project Show

Lua
get_timeline(timelineNum):set_position(position)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

HTTP
POST /api/timeline

{

"action": "set_position",

"num": timelineNum,

"position": position

}

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_position({"num": timelineNum, "position": position }, callback)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

Enqueue Trigger
Fire a trigger in the project Show

Lua
enqueue_trigger(num[,var...])

Argument Type Example
num - the trigger number to enqueue integer 1
var... - 0 or more variables to pass to the trigger comma separated variables 1,2,"string"

Example

enqueue_trigger(1,1,2,"string")

- 498 -

API v2

HTTP
POST /api/trigger

{

"num": num[,

"var": var...][,

"conditions": test_conditions]

}

Argument Type Example
num integer 1
var... comma separated variables 1,2,"string"
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger
l test_conditions - Should the conditions on the trigger be tested?

JavaScript
Query.fire_trigger({"num": num[, "var": var...][, "conditions": test_conditions]
}, callback)

Argument Type Example
num integer 1
var... comma separated variables '1,2,"string"'
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger. If passingmultiple variables, they must be a single string sur-
rounded by single quotes ('), string variables should be surrounded by double quotes (").

l test_conditions - Should the conditions on the trigger be tested?

Run Script
Run a script or parse into the command line on the controller Show

Lua
Not currently available.

HTTP
POST /api/cmdline

{

"input": chunk,

}

- 499 -

Pharos Designer User Manual

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

JavaScript
Query.run_command({ "input": chunk }, callback)

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

Hardware Reset
Reset the controller (power reboot) Show

Lua
Not currently available.

HTTP
POST /api/reset

JavaScript
Not currently available.

Master Intensity
Master the intensity of a group or content target (applied as amultiplier to output levels) Show

Lua
Non-VLC

get_group(groupNum):set_master_intensity(level[, fade[, delay]])

VLC

get_content_target():set_master_intensity(level, [fade, [delay]])

VLC+

get_content_target(compositionNum, type):set_master_intensity(level, [fade,
[delay]])

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or integer (0-255) 128 or 0.5
fade float 2.0

- 500 -

API v2

delay float 2.0

Example:

get_group(1):set_master_intensity(128,3) -- master group 1 to 50% (128/255 = 0.5)
in 3 seconds)

HTTP
Non-VLC

POST /api/group

{

"action": "master_intensity",

"num": groupNum,

"level": level,

["fade": fade,]

["delay": delay]

}

VLC/VLC+

POST /api/content_target

{

"action": "master_intensity",

"level": level,

["fade": fade,]

["delay": delay,]

"type": type

}

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

JavaScript
Non-VLC

- 501 -

Pharos Designer User Manual

master_intensity({ "num": groupNum, "level": level, ["fade": fade,] ["delay":
delay] }, callback)

VLC/VLC+

master_content_target_intensity({ "type":type, "level": level, ["fade": fade,] ["delay": delay] }, callback)

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

Example:

Query.master_intensity({"num":1,"level":"50:100","fade":3) -- master group 1 to
50% (50/100 = 0.5) in 3 seconds)

Note:Group 0 will master the intensity of the 'All Fixtures' group

Set RGB
Set the Intensity, Red, Green, Blue levels for a fixture or group. Show

Lua
get_fixture_override(num)

get_group_override(num)

:set_irgb(intensity, red, green, blue, [fade, [path]])

:set_intensity(intensity, [fade, [path]])

:set_red(red, [fade, [path]])

:set_green(green, [fade, [path]])

:set_blue(blue, [fade, [path]])

:set_temperature(temperature, [fade, [path]])

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

- 502 -

API v2

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:set_rgb(255, 255, 0, 0) -- Set the fixture to Red

HTTP
PUT /api/override

{

"target": target,

"num": num,

["intensity": intensity,]

["red": red,]

["green": green,]

["blue": blue,]

["temperature": temperature,]

["fade": fade,]

["path": path]

}

Argument Type Example

target string (from
options) "group", "fixture"

num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Javascript
set_group_override({ "num": num, ["intensity": intensity,] ["red": red,] ["green":
green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,] ["path":
path] }, callback)

- 503 -

Pharos Designer User Manual

set_fixture_override({ "num": num, ["intensity": intensity,] ["red": red,]
["green": green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,]
["path": path] }, callback)

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

Query.set_fixture_override({ "num": 1, "intensity": 255, "red": 255, "green": 0,
"blue": 0});

Note:Group 0 will set the levels of the 'All Fixtures' group

Clear RGB
Remove any overrides on fixtures or groups. Show

Lua
get_fixture_override(num)

get_group_override(num)

:clear([fade])

clear_all_overrides([fade])

Argument Type Example
num - group or fixture integer 1
fade float 2.0

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:clear() -- Clear the override on fixture 1

HTTP
DELETE /api/override

{

- 504 -

API v2

["target": target,]

["num": objectNum,]

["fade": fade]

}

If num is not included, target is ignored and all overrides are cleared.

Argument Type Example
target string (from options) "group" or "fixture"
num - group or fixture integer 1
fade float 2.0

JavaScript
clear_group_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_fixture_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_overrides({ ["fade": fade] }, callback)

Argument Type Example
num integer 1
fade float 2.0

Example:

Query.clear_overrides({"fade":3})

Set Text Slot
Set the value of a text slot used in the project. Show

Lua
set_text_slot(name, value)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

set_text_slot("myTextSlot", "Hello World!")

HTTP
PUT /api/text_slot

{

"name": name,

- 505 -

Pharos Designer User Manual

"value": value

}

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

JavaScript
set_text_slot({"name": name, "value": value}, callback)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

Query.set_text_slot("name:"myTextSlot", "value":"Hello World!")

Set BPS Button LED
Set the effect and intensity on BPS button LEDS. Show

Lua
get_bps(num):set_led(button, effect, [intensity], [fade])

Argument Type Example
num integer 1
button integer 1

effect OFF, ON, SLOW_FLASH, FAST_FLASH, DOUBLE_FLASH, BLINK, PULSE,
SINGLE, RAMP_ON, RAMP_OFF

FAST_
FLASH

intensity integer (1-255) 255
fade float 0.0

Example:

get_bps(1):set_led(1,FAST_FLASH,255) -- Set button 1 on BPS 1 to Fast Flash at
full intensity

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

- 506 -

API v2

Set TPC Control Value
Set the value on a TPC Slider or Color Picker. Show

Lua
set_control_value(name, [index,] value[, emitChange])

Argument Type Example
name - control Key string "slider001"
index - axis of movement (slider has 1, colour picker has 3) integer (1-3) (default 1) 1
value integer (0-255) 128
emitChange boolean (default false) false

Example:

set_control_value("slider001", 1, 128) -- set slider001 to half and don't fire
associated triggers

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Control State
Set the state on a TPC control. Show

Lua
set_control_state(name, state)

Argument Type Example
name - control Key string "slider001"
state - the state name form Interface string (from options in Interface) "Green"

Example:

set_control_state("slider001", "Green") -- set slider001 to a state called
"Green"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

- 507 -

Pharos Designer User Manual

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Control Caption
Set the caption on a TPC control. Show

Lua
set_control_caption(name, caption)

Argument Type Example
name - control Key string "button001"
caption - text to display string "On"

Example:

set_control_caption("button001", "On") -- set button001's caption to "On"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Page
Change the page on a TPC interface. Show

Lua
set_interface_page(number[, transition])

Argument Type Example
number integer 4
transition SNAP, PAN_LEFT, PAN_RIGHT PAN_LEFT

Example:

set_interface_page(4) -- change the page on the TPC's interface to page 4

HTTP
Not currently available.

- 508 -

API v2

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Disable Page
Disable the TPC touchscreen. Show

Lua
set_interface_enabled([enable])

Argument Type Example
enable boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Lock TPC
Lock the TPC (requires Lock code to be set within Interface). Show

Lua
set_interface_locked([lock])

Argument Type Example
lock boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

- 509 -

Pharos Designer User Manual

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Transition Content Target
Move or rotate a Content Target. Show

Lua
get_content_target(compositionNum, type)

:transition_rotation([offset], [count], [period], [delay], [useShortestPath])

:transition_x_position([offset], [count], [period], [delay])

:transition_y_position([offset], [count], [period], [delay])

Argument Type Example
compositionNum integer 1
type PRIMARY, SECONDARY, OVERLAY_1, OVERLAY_2 PRIMARY
offset integer 10
count integer 1
period integer 5
delay integer 0
useShortestPath boolean (default false) false

Example:

tar = get_composition_target(1,PRIMARY)

tar:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds

tar:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds

tar:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

- 510 -

API v2

Use Run Script or Enqueue Trigger

Beacon Controller
Beacons the controller (flashes Status LEDs or screen). Show

Lua
Not currently available.

HTTP
POST /api/beacon

JavaScript
toggle_beacon(callback)

Example:

Query.toggle_beacon()

Output To Log
Writes amessage to the controller's Log. Show

Lua
log([level,]message)

Argument Type Example

level option (LOG_DEBUG, LOG_TERSE, LOG_NORMAL, LOG_EXTENDED,
LOG_VERBOSE, LOG_CRITICAL, default LOG_NORMAL)

LOG_
CRITICAL

message string
"Some
message to
log."

Example:

log(LOG_CRITICAL, "This is a criticial message!") -- logs themessage at Critical log level

log("This is a normal message.") -- logs themessage at Normal log level.

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

- 511 -

Pharos Designer User Manual

Send Variables To Web Interface
Sends data to the web interface in a JSON Object. Show

Lua
push_to_web(name, value)

Argument Type Example
name string "myVar"
value variable "Some value"

Example:

myVar = 15

push_to_web("myVar", myVar) -- will push the object {"myVar": 15}

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Park A Channel
Parks an output channel at a specified level. Show

Lua
Universe:park(channel, value)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1
value integer (0-255) 128

Example:

get_dmx_universe(1):park(1,128) -- Park channel 1 of DMX Universe 1 at 128 (50%)

HTTP
POST /api/channel

{

"universe": universeKey,

- 512 -

API v2

"channels": channelList,

"level": level

}

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"
level integer (0-255) 128

JavaScript
park_channel({ "universe": universeKey, "channels": channelList, "level": level },
callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"
value integer (0-255) 128

Example:

park_channel({ "universe": "dmx:1","channels": 1, "level":128}); // Park channel
1 of DMX Universe 1 at 128 (50%)

Unpark A Channel
Unparks an output channel. Show

Lua
Universe:unpark(channel)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1

Example:

get_dmx_universe(1):unpark(1) -- Unpark channel 1 of DMX Universe 1 (it will go
back to normal output levels)

- 513 -

Pharos Designer User Manual

HTTP
DELETE /api/channel

{

"universe": universeKey,

"channels": channelList

}

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

JavaScript
park_channel({ "universe": universeKey, "channels": channelList }, callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

Example:

park_channel({ "universe": "dmx:1","channels": 1}); //Unpark channel 1 of DMX Uni-
verse 1 (it will go back to normal output levels)

Disable an Output
Unparks an output channel. Show

Lua
disable_output(protocol)

enable_output(protocol)

Argument Type Example
protocol option (DMX, PATHPORT, ARTNET, KINET, SACN, DVI, RIO_DMX) DMX

Example:

disable_output(DMX) -- Disable the DMX output from the controller

- 514 -

API v2

HTTP
POST /api/output

{

"protocol": protocol,

"action": action

}

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"
action string ("enable", "disable") "disable"

JavaScript
disable_output({ "protocol": protocol }, callback)

enable_output({ "protocol": protocol }, callback)

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"

Example:

disbale_output({ "protocol": "dmx"}); // Disable the DMX output

enable_output({ "protocol": "art-net"}); // Enable the Art-Net Output

Set Timeline Source Bus
Set the time source for a timeline. Show

Lua
Timeline:set_default_source()

Timeline:set_timecode_source(timecodeBus[, offset])

Timeline:set_audio_source(audioBus, band, channel[,peak])

Argument Type Example
Timeline Timeline Object get_timeline(1)
timecodeBus TCODE_1 ... TCODE_6 TCODE_1
audioBus AUDIO_1 ... AUDIO_4 AUDIO_1
band integer (0=volume) 0
channel LEFT, RIGHT or COMBINED LEFT
peak boolean (default false) false

Example:

get_timeline(1):set_timecode_source(TCODE_1) -- Set the timecode source of timeline 1 to timecode bus 1

- 515 -

Pharos Designer User Manual

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Enable Timecode Bus
Enables or disables a timecode bus. Show

Lua
set_timecode_bus_enabled(bus[, enable])

l bus is the timecode bus to enable or disable (TCODE_1 ... TCODE_6)
l enable determines whether the bus should be enabled or disabled (boolean, default true)

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

API Subscriptions
Subscriptions allow data to be pushed to the web interface whenever there is a change within the project. show

Subscribe Timeline Status
Subscribes to changes in the timeline status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_timeline_status(callback)

Returns an object with the following properties:

- 516 -

API v2

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true
position number (milliseconds) 5000

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_timeline_status(function(t){

alert(t.num + ": " + t.state)

})

Subscribe Scene Status
Subscribes to changes in the scene status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_scene_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_scene_status(function(s){

alert(s.num + ": " + s.state)

})

Subscribe Group Status
Subscribes to changes in group level, as set by theMaster Intensity action (any change is pushed to the interface).
Show

Lua

- 517 -

Pharos Designer User Manual

Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_group_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
name string 'Group 1'
level integer (0-255) 128

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_group_status(function(g){

alert(g.num + ": " + g.level)

})

Subscribe Remote Device Status
Subscribes to changes in Remote Device Online/Offline Status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_remote_device_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
type string ('RIO 08', 'RIO 44', 'RIO 80','RIO D', 'RIO A', 'BPS') 'Group 1'
online boolean true
serial string (of serial number) '001001'

Callback is used to define a function that should be called whenever the data is received

Example:

- 518 -

API v2

subscribe_remote_device_status(function(r){

alert(r.num + ": " + r.level)

})

Subscribe Beacon
Subscribes to Beacons (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_beacon(callback)

Returns an object with the following properties:

Property Return type Return Example
on boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_beacon(function(b){

if (b.on){

alert("Beacon Turned On")

else {

alert("Beacon Turned Off")

}

})

Subscribe Lua
The receiver for the push_to_web() Lua function. Show

Lua
Not currently available.

HTTP
Not currently available.

- 519 -

Pharos Designer User Manual

JavaScript
subscribe_lua(callback)

Returns an object with the following properties:

Property Return type Return Example
key as defined by push_to_web() value

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_lua(function(l){

key = Object.keys(l)[0]

value = l.key

alert(key + ": " + value)

})

API Objects
Below are the helper functions and objects in the project. show

Variant
A Lua object that allows a type and range to be associated with a variable. Show

Lua
See here.

HTTP
Not currently available.

JavaScript
Not currently available.

DateTime
A Lua object containing time data. Show

Lua
The DateTime object contains the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (0-11) 5
.monthday integer (0-30) 8

- 520 -

API v2

.weekday integer(0-6) 1

.hour integer(0-23) 13

.minute integer (0-59) 21

.second integer (0-59) 46

.utc_timestamp integer 1494249706

.time_string string

.date_string string

HTTP
Not currently available.

JavaScript
Not currently available.

Printing An Enum
Lua functions to convert integers returned from some functions as text. Show

Lua
digital_input_to_string()

button_state_to_string()

Examples:

log(digital_input_to_string(get_input(1)))

str = button_state_to_string(get_bps(1):get_state(1))

HTTP
Not currently available.

JavaScript
Not currently available.

- 521 -

Pharos Designer User Manual

API V1
The Pharos system includes multiple API options:

l Lua (used internally with Conditions and Actions)
l HTTP (used with external devices/software to communicate with a controller)
l JavaScript (used with CustomWeb Interfaces)

These APIs have been unified to simplify their use as much as possible.

Glossary:

l Object - A collection of key value pairs e.g. "name" = "Controller 1" (syntax will differ between languages).
l String - A series of characters e.g."Th1s_is-4(string)"
l Number - Any whole or floating point(decimal) number e.g. 1,2,3,1.5,12.3456)
l Integer - A whole number
l Bounded integer - An integer with a range (e.g. 10:100 = 10%)
l Float/real/number - A decimal number (e.g. 3.2 or 1.0)
l JSON - (JavaScript Object Notation) a way of transferring information in the form of a JavaScript Object
l GET - A HTTP method to request data from a server
l POST - A HTTP method to request data in amore secure way
l PUT - A HTTP method to send data to a server
l Variant - See here
l [] - anything shownwithin square brackets is optional. The square brackets should be omitted if the optional
section is used.

l callback - A function to run when the javascript function has been run, or a reply has been received.

HTTP Requests

Please note, when a HTTP POST request is sent, it must include a Content-Type header set to "application/json",
otherwise it will be treated as invalid.

API Queries
Below are the ways of getting data from the controller. show

System
Returns data about the controller. show

Lua
The system namespace has the following properties:

Property Return type Return Example
.hardware_type string "lpc"
.channel_capacity integer 512
.serial_number string "006321"
.memory_total string "12790Kb"
.memory_used string "24056Kb"
.memory_free string "103884Kb"

- 522 -

API v1

.storage_size string "1914MB"

.bootloader_version string "0.9.0"

.firmware_version string "2.7.0"

.reset_reason string "Software Reset"

.last_boot_time DateTime object

.ip_address string "192.168.1.3"

.subnet_mask string "255.255.255.0"

.default_gateway string "192.168.1.3"

Example:

capacity = system.channel_capacity

boot_time = system.last_boot_time.time_string

HTTP
GET /api/system

Returns an object with the following properties:

Property Return type Return Example
hardware_type string "LPC"
channel_capacity integer 512
serial_number string "006321"
memory_total string "12790Kb"
memory_used string "24056Kb"
memory_free string "103884Kb"
storage_size string "1914MB"
bootloader_version string "0.9.0"
firmware_version string "2.7.0"
reset_reason string "Software Reset"
last_boot_time string "01 Jan 2017 09:09:38"
ip_address string "192.168.1.3"
subnet_mask string "255.255.255.0"
default_gateway string "192.168.1.3"

JavaScript
get_system_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_system_info(function(system){

var capacity = system.channel_capacity

}

- 523 -

Pharos Designer User Manual

Project
Returns data about the project. Show

Lua
get_current_project()

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

project_name = get_current_project().name

HTTP
GET /api/project

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
author string "Pharos"
filename string "help_project_v1.pd2"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"
upload_date string "2017-01-30T15:19:08"

JavaScript
get_project_info(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_project_info(function(project){

var author = project.author

}

Replication
Returns data about the install replication. Show

Lua
get_current_replication()

- 524 -

API v1

Returns an object with the following properties:

Property Return type Return Example
name string "Help Project"
unique_id string "{6b48627a-1d5e-4b2f-81e2-481e092a6a79}"

Example:

rep_name = get_current_replication().name

HTTP
Not currently available.

JavaScript
Not currently available.

Time
Returns data about the time stored in the controller. Show

Lua
The time namespace has the following functions which return a DateTime object

l get_current_time()
l get_sunrise()
l get_sunset()
l get_civil_dawn()
l get_civil_dusk()
l get_nautical_dawn()
l get_nautical_dusk()
l get_new_moon()
l get_first_quarter()
l get_full_moon()
l get_third_quarter()

and the following properties

Property Return Type Return Example
is_dst boolean
gmt_offset string

Each function returns a DateTime object, with the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (1-12) 5
.monthday integer (1-31) 8
.weekday integer(0-6) (Sunday = 0) 1
.hour integer(0-23) 13

- 525 -

Pharos Designer User Manual

.minute integer (0-59) 21

.second integer (0-59) 46

.utc_timestamp integer 1494249706

.time_string string

.date_string string

Example:

current_hour = time.get_current_time().hour

HTTP
GET /api/time

Returns an object with the following properties:

Property Return Type Return Example
datetime string "01 Feb 2017 13:44:42"
utc integer (controller's local time inmilliseconds 1485956682
uptime integer (time since last boot) 493347

JavaScript
get_current_time(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_current_time(function(time){

var uptime = time.uptime

}

Timeline
Returns data about the timelines in the project and their state on the controller. Show

Lua
get_timeline(timelineNum)

Returns a single Timeline object for the timeline with user number timelineNum.

The returned object has the following properties

Property Return Type Return
Example

name string "Timeline 1"
group string ('A', 'B', 'C', 'D','') 'A'
length integer 10000
source_
bus

integer (equivalent to constants: DEFAULT, TCODE_1 ... TCODE_6, AUDIO_
1 ... AUDIO_4) 1

- 526 -

API v1

timecode_
format string "SMPTE30"

audio_
band integer (0 is equivalent to constant VOLUME) 0

audio_
channel integer (equivalent to constants: LEFT, RIGHT or COMBINED) 1

audio_
peak boolean false

time_off-
set integer 5000

state integer (equivalent to constants: Timeline.NONE, Timeline.RUNNING,
Timeline.PAUSED, Timeline.HOLDING_AT_END, Timeline.RELEASED) 1

onstage boolean true
position integer 5000

priority
integer (equivalent to constants: HIGH_PRIORITY, ABOVE_NORMAL_
PRIORITY, NORMAL_PRIORITY, BELOW_NORMAL_PRIORITY or LOW_
PRIORITY)

0

Example:

tl = get_timeline(1)

name = tl.name

state = tl.state

if (tl.source_bus == TCODE_1) then

-- do something

end

HTTP
GET /api/timeline[?num=timelineNumbers]

l num can be used to filter which timelines are returned and can be a single number or a string representing the
required timelines (e.g. "1,2,5-9")

Returns an object with the following properties:

timelines array of timeline objects

Each timeline object contains the following properties:

Property Return Type Return Example
num integer 1
name string "Timeline 1"
group string('A', 'B', 'C', 'D' or empty) "A"
length integer 10000
source_bus string ('internal', 'timecode_1',...'timecode_6', 'audio_1',...'audio_4') 100

- 527 -

Pharos Designer User Manual

timecode_format string "SMPTE30"
audio_band integer (0 is volume band) 1
audio_channel string ('left', 'right', 'combined') "combined"
audio_peak boolean false
time_offset integer 5000
state string ('none', 'running', 'paused', 'holding_at_end', 'released') "running"
onstage boolean true
position integer 10000
priority string ('high', 'above_normal', 'normal', 'below_normal', 'low') "normal"

JavaScript
get_timeline_info(callback[, num])

l num can be used to filter which timelines are returned and is defined as a JSON object which can contain a
single number or a string representing the required timelines (e.g. "1,2,5-9")

Returns an array of timelines in the sameway as the HTTP call

Example:

Query.get_timeline_info(function(t){

var name = t.timelines[0].name //name of the first timeline

}, {"num":"1-4"})

Scene
Returns data about the Scenes in the project and their state on the controller. Show

Lua
get_scene(sceneNum)

Returns a single Scene object for the Scene with user number SceneNum.

The returned object has the following properties

Property Return Type Return Example
name string "Scene 1"
state string ('none', 'started') "none"
onstage boolean false

Example:

scn = get_scene(1)

name = scn.name

state = scn.state

- 528 -

API v1

HTTP
GET /api/scene[?num=sceneNumbers]

num can be used to filter which scenes are returned and can be a single number or array

Returns an object with the following properties:

scenes array of scene objects

Each scene object contains the following properties:

Property Return Type Return Example
name string "Scene 1"
num integer 1
state string ('none', 'started') "none"
onstage boolean false

JavaScript
get_scene_info(callback[, num])

filter may contain a num property which is used to filter which scenes are returned

Returns an array of scenes in the sameway as the HTTP call

Example:

Query.get_scene_info(function(s){

var name = s.scenes[0].name //name of the first timeline

}, {"num":"1-4"})

Group
Returns data about the groups in the project. Show

Lua
get_group(groupNum)

Returns aGroup object for the group with user number groupNum.

The returned object has the following properties:

Property Return Type Return Example
name string "Group 1"
master_intensity_level Variant

Example:

grp = get_group(1)

name = grp.name

- 529 -

Pharos Designer User Manual

HTTP
GET /api/group[?num=groupNumbers]

num can be used to filter which groups are returned and can be a single number or array

Returns an object with the following properties:

groups array of group objects

Each group object contains the following properties:

Property Return Type Return Example
num integer 1
name string "Group 1"
level integer (0-100) 100

JavaScript
get_group_info(callback[, num])

filter may contain a num property which is used to filter which groups are returned

Returns an array of groups in the sameway as the HTTP call

Example:

Query.get_group_info(function(g){

var name = g.groups[0].name //name of the first timeline

}, {"num":"1-4"})

Note:Group 0 will return data about the 'All Fixtures' group

Controller
Returns data about the controller. Show

Lua
get_current_controller()

Returns an object for the containing the following properties:

Property Return Type Return Example
number integer 1
name string "Controller 1"

Example:

cont = get_current_controller()

name = cont.name

is_controller_online(controllerNumber)

- 530 -

API v1

Returns true if the controller with user number controllerNum has been discovered, and false otherwise

Example:

if (is_controller_online(2)) then

log("Controller 2 is online")

else

log("Controller 2 is offline")

end

HTTP
GET /api/controller

Returns an object with the following properties:

controllers array of controller objects (one for each controller in the project)

Each controller object contains the following properties:

Property Return Type Return
Example

num number 1
type string "LPC"
name string "Controller 1"
serial string "009060"
ip_
address

string (if the controller is discovered)/empty (if the controller is not discovered or
is the queried controller)

"192.168.1.3"
or ""

online boolean true

JavaScript
get_controller_info(callback)

Returns an array of controllers in the sameway as the HTTP call

Example:

Query.get_controller_info(function(controller){

var name = controller[0].name // name of the first controller

}

Temperature
Returns data about the controller's temperature. Show

Lua
get_temperature()

- 531 -

Pharos Designer User Manual

Returns an object with the following properties

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core1_temp number (only for LPC X and VLC/VLC+) 44
core2_temp number (only for LPC X rev 1 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

Example:

temp = get_temperature()

log(temp.ambient_temp)

HTTP
GET /api/temperature

Returns an object with the following properties:

Property Return Type Return Example
sys_temp number (only for LPC X and VLC/VLC+) 40
core1_temp number (only for LPC X and VLC/VLC+) 44
core2_temp number (only for LPC X rev 1 44
ambient_temp number (only for TPC, LPC X rev 1) 36.900001525878906
cc_temp number (only for LPC X rev 2 and VLC/VLC+) 44
gpu_temp number (only for VLC/VLC+) 44

JavaScript
get_temperature(callback)

Returns an object with the same properties as in the HTTP call

Example:

Query.get_temperature(function(temp){

var ambient = temp.ambient_temp // ambient temperature of the controller

}

Remote Device
Returns data about the Remote Device/s in the project. Show

Lua
get_rio(type, num):get_input(inputNum)

l type can be RIO80, RIO44 or RIO08
l num is the remote device number

- 532 -

API v1

l inputNum is the number of the input

Returns a boolean if the input is set to Digital or Contact Closure, or an integer if the input is set to Analog.

Example:

rio = get_rio(RIO44, 1)

input = rio:get_input(1)

get_bps(num):get_state(buttonNum)

l num is the BPS number
l buttonNum is the number of the button

Returns the state of the button, which can be RELEASED, PRESSED, HELD or REPEAT

Example:

bps = get_bps(1)

btn = bps:get_state(1)

HTTP
GET /api/remote_device

Returns an array of all remote devices in the project.

The returned object has the following structure

remote_devices array of Remote Device objects

Each Remote Device object contains the following properties:

Property Return Type Return Example
num integer 1

type
string ('RIO08', 'RIO44',
'RIO80', 'BPS', 'BPI', 'RIO
A', 'RIO D')

"RIO 44"

serial
array (all discovered serial
number for the address and
type)

["001234"]

outputs

array (of Output objects, only
present for RIO44 and
RIO08 that are on the quer-
ied controller)

[{"output":1,"value":true},{"output":2,"value":true},{"out-
put":3,"value":true},{"output":4,"value":true}]

inputs

array (of Input objects, only
present for RIO44 and
RIO80 that are on the quer-
ied controller)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"-
type":"Contact Closure","value":true},{"input":3,"type":"Contact
Closure","value":true},{"input":4,"type":"Contact Clos-
ure","value":true}]

online boolean (if the remote device
is detected as being online) true

TheOutput object has the following properties:

- 533 -

Pharos Designer User Manual

Property Return Type Return Example
output integer 1
state boolean (truemeans the output is on, falsemeans it is off) false

The Input object has the following properties:

Property Return Type Return Example
input integer 1
type string ('Analog', 'Digital', 'Contact Closure') 'Digital'
value integer or bool (depends on type) true

JavaScript
get_remote_device_info(callback)

Returns an array of all remote devices in the project with the same properties as in the HTTP call.

Example:

Query.get_remote_device_info(function(remote){

var type = remote[0].type // type of the first remote device

}

Text Slots
Returns data about the text slots in the project. Show

Lua
get_text_slot(slotName)

l slotName is the name of the text slot

Returns the value of slotName

Example:

log(get_text_slot("test_slot"))

HTTP
GET /api/text_slot[?names=slotNames]

slotNames can be used to filter which text slots are returned and can be a single name or array

The returned object has the following structure

text_slots array of Text Slot objects

Each Text Slot object contains the following properties:

Property Return Type Return Example

- 534 -

API v1

name string "text"
value string "example"

JavaScript
get_text_slot(callback[, filter])

filter may contain a names property which is used to filter which text slot values are returned

Returns an array of all text slots in the project with the same properties as in the HTTP call.

Example:

Query.get_text_slot(function(text){

var value = text[0].value // value of the first text slot

}, {names: "test_slot1", "test_slot2"})

Get Log
Returns the log from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/log

The returned object has the following structure

Property Return Type
log string (containing the whole log of the controller)

JavaScript
Not currently available.

Protocol
Returns the protocols and universes being output from the queried controller. Show

Lua
Not currently available.

HTTP
GET /api/protocol

Returns all the universes on the queried controller

The returned object has the following structure

- 535 -

Pharos Designer User Manual

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example
type integer 1
name string "DMX"

universes array (Universe objects) {"key":{"index":1},"name":"1"},{"key":{"index":2},"-
name":"2"}

dmx_
proxy

DMX Proxy Object (where
appropriate) { "ip_address": "192.168.1.17", "name": "Controller 1" }

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

JavaScript
get_protocols(callback)

Returns all the universes on the queried controller

The returned object has the following structure

outputs array of Protocol objects

Each Protocol object has the following properties:

Property Return Type Return Example
type integer 1

- 536 -

API v1

name string "DMX"

universes array (Universe objects) [{"key":{"index":1},"name":"1"},{"key":{"index":2},"-
name":"2"}]

dmx_
proxy

DMX Proxy Object (where
appropriate)

Each Universe object has the following properties:

Property Return Type Return Example
name string "1"
key Universe Key object {"index":1}

Each DMX Proxy object has the following properties:

Property Return Type Return Example
name string (name of the controller that is outputting this universe) 'Controller 1'
ip_address string IP Address of the controller outputting this universe '192.168.1.23'

The properties of the Universe Key object depends upon the type:

For DMX, Pathport, sACN and Art-Net:

Property Return Type Return Example
index integer 1

For KiNET:

Property Return Type Return Example
kinet_port integer 1
kinet_power_supply_num integer 1

Output
Returns the levels being output from the queried controller. Show

Lua
get_dmx_universe(idx)

get_artnet_universe(idx)

get_pathport_universe(idx)

get_sacn_universe(idx)

l idx is the required universe number

get_kinet_universe(power_supply_num, port_num)

l power_supply_num is the power supply to return the output from
l port_num is the port to return the output from

These all return a Universe object, which has the following function

get_channel_value(chnl)

- 537 -

Pharos Designer User Manual

l chnl is the channel to get the value from

Example:

uni = get_dmx_universe(1) -- get DMX Universe 1

level = uni:get_channel_value(1) -- get channel 1 from the returned universe

HTTP
GET /api/output?universe=universeKey

l universeKey is a string in the form protocol:index for DMX, Pathport, sACN and Art-Net, pro-
tocol:kinetPowerSupplyNum:kinetPort for KiNET and protocol:remoteDeviceType:remoteDeviceNum for
RIODMX.

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

Example:

GET /api/output?universe=dmx:1

GET /api/output?universe=rio-dmx:rio44:1

The returned object has the following structure

Property Return Type Return Example
channels array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

proxied_
tpc_name

string (only if controller is LPC, universe is DMX
2, DMX Proxy has been enabled and the TPC is
offline)

'Controller 2'

JavaScript
get_output(universeKey, callback)

Argument Type Example

universekey string or an object containing protocol and either index, kinet_power_supply_num
and kinet_port or remote_device_type and remote_device_num dmx:1

l universeKey can be either a string, or an object containing protocol and either index, kinet_power_supply_
num and kinet_port or remote_device_type and remote_device_num as received from get_protocols

Returns an object with the same structure as in the HTTP call

Input
Returns the inputs on the queried controller. Show

Lua
get_input(idx)

Argument Type Example
idx integer 1

- 538 -

API v1

Returns the value of the controllers input as a boolean or integer

Example:

in1 = get_input(1)

if in1 == true then

log("Input 1 is digital and high")

elseif in1 == false then

log("Input 1 is digital and low")

else

log("Input 1 is analog at " .. in1)

get_dmx_input(chnl)

Argument Type Example
chnl integer 1

l chnl is the required channel number

Returns the value of the DMX input at channel chnl as an integer

HTTP
GET /api/input

The returned object has the following structure

Property Return
Type Return Example

gpio

array (of
Input
objects, on
LPC or
TPC+EXT)

[{"input":1,"type":"Contact Closure","value":true},{"input":2,"type":"Contact Clos-
ure","value":true},{"input":3,"type":"Contact Closure","value":true},{"input":4,"-
type":"Contact Closure","value":true},{"input":5,"type":"Contact
Closure","value":true},{"input":6,"type":"Contact Closure","value":true},{"input":7,"-
type":"Contact Closure","value":true},{"input":8,"type":"Contact Clos-
ure","value":true}]

dmxIn

object
(DMX Input
object, if
DMX Input
is
configured)

[0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

The Input object has the following properties:

Property Return Type Return Example
input integer 1
type string ('Analog', 'Digital', 'Contact Closure') "Contact Closure"
value integer or bool (depends on type) true

- 539 -

Pharos Designer User Manual

The DMX Input object has the following properties:

Property Return Type Return Example

error string (if DMX Input is configured but no
DMX is received) "No DMX received"

dmxInFrame array (of channel values) [0,0,0,0,0,0,0,0,0,255,255,255...255,0,255]

JavaScript
Not currently available.

Trigger
Returns the triggers in the project. Show

Lua
Not currently available.

HTTP
GET /api/trigger

The returned object has the following structure

triggers array (of Trigger objects)

The Trigger object has the following properties:

Property Return Type Return Example
type string "Startup"
num integer 1
name string "Startup"
trigger_text string "At startup"
conditions array (of Condition objects) [{"text":"Before 12:00:00 every day"}]
actions array (of Action objects [{"text":"Start Timeline 1"}]

The Condition and Action objects have the following properties:

Property Return Type Return Example
text string "Start Timeline 1"

JavaScript
Not currently available.

Lua Variable
Returns the current value of the specified Lua variable. Show

Lua
Not currently available.

- 540 -

API v1

HTTP
GET /api/lua?variables=luaVariables

Argument Type Example
luaVariables string or comma separated list 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

JavaScript
get_lua_variables(luaVariables, callback)

Argument Type Example
luaVariables string or array 'myVar' or 'myVar, myVar2, myVar3'

Returns an object containing all the Lua variables requested and their values.

Example:

Query.get_lua_variables("myVar", function(lua){

var value = lua.myVar

}

Trigger Variable
Returns the value of a variables from the trigger that ran the script. Show

Lua
get_trigger_variable(idx)

Argument Type Example
idx integer 1

Returns the trigger variable at idx as a Variant object.

Example:

-- Use with a TPC Colour Move Trigger

red = get_trigger_variable(1).integer

green = get_trigger_variable(2).integer

blue = get_trigger_variable(3).integer

HTTP
Not currently available.

- 541 -

Pharos Designer User Manual

JavaScript
Not currently available.

Resources
Use to locate resources in the controller's memory. Show

Lua
get_resource_path(filename)

Argument Type Example
filename string 'settings.txt'

Returns a path to the resource filename.

Example:

dofile(get_resource_path("my_lua_file.lua"))

HTTP
Not currently available.

JavaScript
Not currently available.

Content Target
Returns information about a Content Target in the project. Show

Lua
On a VLC

get_content_target(compositionNum)

On a VLC+

get_content_target(compositionNum, type)

l compositionNum is the usernumber of the composition to return
l type is the type of target within the composition to return (PRIMARY, SECONDARY, OVERLAY_1,
OVERLAY_2)

Returns a Content Target object with the following properties:

master_intensity_level Variant
rotation_offset (VLC+ only) float
x_position_offset (VLC+ only) float
y_position_offset (VLC+ only) float

Example:

- 542 -

API v1

target = get_content_target(1)

current_level = target.master_intensity_level

target = get_content_target(1,PRIMARY)

current_angle = target.rotation_offset

HTTP
Not currently available.

JavaScript
Not currently available.

API Actions
Below are the ways of changing properties or changing output on the controller. show

Start Timeline
Start a timeline in the project Show

Lua
get_timeline(timelineNum):start()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "start",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.start_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Start Scene
Start a scene in the project Show

- 543 -

Pharos Designer User Manual

Lua
get_scene(sceneNum):start()

Argument Type Example
sceneNum integer 1

HTTP
POST /api/scene

{

"action": "start",

"num": sceneNum

}

Argument Type Example
sceneNum integer 1

JavaScript
Query.start_scene({ "num": sceneNum}, callback)

Argument Type Example
sceneNum integer 1

Release Timeline
Release a timeline in the project Show

Lua
get_timeline(timelineNum):release([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "release",

"num": timelineNum[,

"fade": fade]

}

- 544 -

API v1

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.release_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Release Scene
Release a scene in the project Show

Lua
get_scene(sceneNum):release([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

{

"action": "release",

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.release_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

Toggle Timeline
Toggle a timeline in the project (if it is running, stop it, and if it is not running, start it) Show

- 545 -

Pharos Designer User Manual

Lua
get_timeline(timelineNum):toggle([fade])

Argument Type Example
timelineNum integer 1
fade float 2.0

HTTP
POST /api/timeline

{

"action": "toggle",

"num": timelineNum[,

"fade": fade]

}

Argument Type Example
timelineNum integer 1
fade float 2.0

JavaScript
Query.toggle_timeline({ "num": timelineNum[, "fade": fade]}, callback)

Argument Type Example
timelineNum integer 1
fade float 2.0

Toggle Scene
Toggle a scene in the project (if it is running, stop it, and if it is not running, start it) Show

Lua
get_scene(sceneNum):toggle([fade])

Argument Type Example
sceneNum integer 1
fade float 2.0

HTTP
POST /api/scene

{

"action": "toggle",

- 546 -

API v1

"num": sceneNum[,

"fade": fade]

}

Argument Type Example
sceneNum integer 1
fade float 2.0

JavaScript
Query.toggle_scene({ "num": sceneNum[, "fade": fade]}, callback)

Argument Type Example
sceneNum integer 1
fade float 2.0

Pause Timeline
Pause a timeline in the project Show

Lua
get_timeline(timelineNum):pause()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "pause",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.pause_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Resume Timeline
Resume a timeline in the project Show

- 547 -

Pharos Designer User Manual

Lua
get_timeline(timelineNum):resume()

Argument Type Example
timelineNum integer 1

HTTP
POST /api/timeline

{

"action": "resume",

"num": timelineNum

}

Argument Type Example
timelineNum integer 1

JavaScript
Query.resume_timeline({ "num": timelineNum}, callback)

Argument Type Example
timelineNum integer 1

Pause All
Pause all timelines in the project Show

Lua
pause_all()

HTTP
POST /api/timeline

{

"action": "pause"

}

JavaScript
Query.pause_all(callback)

Resume All
Resume all timelines in the project Show

Lua

- 548 -

API v1

resume_all()

HTTP
POST /api/timeline

{

"action": "resume"

}

JavaScript
Query.resume_all(callback)

Release All
Release all timelines, scenes or timelines, scenes and overrides in the project Show

Lua
release_all([fade,] [group])

release_all_timelines([fade,] [group])

release_all_scenes([fade,] [group])

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

HTTP
POST /api/release_all

POST /api/timeline

POST /api/scene

{

"action": "release"[, (not required for release all)

"group": group][,

"fade": fade]

}

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

JavaScript
release_all_timelines({["fade": fade]}, callback)

- 549 -

Pharos Designer User Manual

release_all_scenes({["fade": fade]}, callback)

release_all({ ["fade": fade,] ["group": group] }, callback)

Argument Type Example
fade float 2.0
group string ("A","B","C","D") prepend with ! for except (e.g. "!A") "A"

Set Timeline Rate
Set the rate of a timeline in the project Show

Lua
get_timeline(timelineNum):set_rate(rate)

Argument Type Example
timelineNum integer 1
rate float or integer (0-255) 0.1 or 25

HTTP
POST /api/timeline

{

"action": "set_rate",

"num": timelineNum,

"rate": rate

}

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_rate({"num": timelineNum, "rate": rate }, callback)

Argument Type Example
timelineNum integer 1
rate float or bounded integer 10:100 or 0.1

Set Timeline Position
Set the position of a timeline in the project Show

Lua
get_timeline(timelineNum):set_position(position)

Argument Type Example

- 550 -

API v1

timelineNum integer 1
position float or integer (0-255) 0.1 or 25

HTTP
POST /api/timeline

{

"action": "set_position",

"num": timelineNum,

"position": position

}

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

JavaScript
Query.set_timeline_position({"num": timelineNum, "position": position }, callback)

Argument Type Example
timelineNum integer 1
position float or bounded integer 10:100 or 0.1

Enqueue Trigger
Fire a trigger in the project Show

Lua
enqueue_trigger(num[,var...])

Argument Type Example
num - the trigger number to enqueue integer 1
var... - 0 or more variables to pass to the trigger comma separated variables 1,2,"string"

Example

enqueue_trigger(1,1,2,"string")

HTTP
POST /api/trigger

{

"num": num[,

"var": var...][,

- 551 -

Pharos Designer User Manual

"conditions": test_conditions]

}

Argument Type Example
num integer 1
var... comma separated variables 1,2,"string"
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger
l test_conditions - Should the conditions on the trigger be tested?

JavaScript
Query.fire_trigger({"num": num[, "var": var...][, "conditions": test_conditions]
}, callback)

Argument Type Example
num integer 1
var... comma separated variables '1,2,"string"'
test_conditions boolean true

l num - the trigger number to enqueue
l var... - 0 or more variables to pass to the trigger. If passingmultiple variables, they must be a single string sur-
rounded by single quotes ('), string variables should be surrounded by double quotes (").

l test_conditions - Should the conditions on the trigger be tested?

Run Script
Run a script or parse into the command line on the controller Show

Lua
Not currently available.

HTTP
POST /api/cmdline

{

"input": chunk,

}

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

JavaScript
Query.run_command({ "input": chunk }, callback)

- 552 -

API v1

Note: returns "Executed" if successful, or an error string if not

Argument Type Example
chunk - the script to parse or run string "tl = 1 get_timeline(tl):start()"

Hardware Reset
Reset the controller (power reboot) Show

Lua
Not currently available.

HTTP
POST /api/reset

JavaScript
Not currently available.

Master Intensity
Master the intensity of a group or content target (applied as amultiplier to output levels) Show

Lua
Non-VLC

get_group(groupNum):set_master_intensity(level[, fade[, delay]])

VLC

get_content_target():set_master_intensity(level, [fade, [delay]])

VLC+

get_content_target(compositionNum, type):set_master_intensity(level, [fade,
[delay]])

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or integer (0-255) 128 or 0.5
fade float 2.0
delay float 2.0

Example:

get_group(1):set_master_intensity(128,3) -- master group 1 to 50% (128/255 = 0.5)
in 3 seconds)

- 553 -

Pharos Designer User Manual

HTTP
Non-VLC

POST /api/group

{

"action": "master_intensity",

"num": groupNum,

"level": level,

["fade": fade,]

["delay": delay]

}

VLC/VLC+

POST /api/content_target

{

"action": "master_intensity",

"level": level,

["fade": fade,]

["delay": delay,]

"type": type

}

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

JavaScript
Non-VLC

master_intensity({ "num": groupNum, "level": level, ["fade": fade,] ["delay":
delay] }, callback)

VLC/VLC+

master_content_target_intensity({ "type":type, "level": level, ["fade": fade,] ["delay": delay] }, callback)

- 554 -

API v1

Argument Type Example
groupNum integer 1
compositionNum Not currently used
type - of content target string (from options) 'primary', 'secondary', 'overlay_1', 'overlay_2'
level float or bounded integer 0.5 or "50:100"
fade float 2.0
delay float 2.0

Example:

Query.master_intensity({"num":1,"level":"50:100","fade":3) -- master group 1 to
50% (50/100 = 0.5) in 3 seconds)

Note:Group 0 will master the intensity of the 'All Fixtures' group

Set RGB
Set the Intensity, Red, Green, Blue levels for a fixture or group. Show

Lua
get_fixture_override(num)

get_group_override(num)

:set_irgb(intensity, red, green, blue, [fade, [path]])

:set_intensity(intensity, [fade, [path]])

:set_red(red, [fade, [path]])

:set_green(green, [fade, [path]])

:set_blue(blue, [fade, [path]])

:set_temperature(temperature, [fade, [path]])

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:set_rgb(255, 255, 0, 0) -- Set the fixture to Red

- 555 -

Pharos Designer User Manual

HTTP
PUT /api/override

{

"target": target,

"num": num,

["intensity": intensity,]

["red": red,]

["green": green,]

["blue": blue,]

["temperature": temperature,]

["fade": fade,]

["path": path]

}

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255
green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Javascript
set_group_override({ "num": num, ["intensity": intensity,] ["red": red,] ["green":
green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,] ["path":
path] }, callback)

set_fixture_override({ "num": num, ["intensity": intensity,] ["red": red,]
["green": green,] ["blue": blue,] ["temperature": temperature,] ["fade": fade,]
["path": path] }, callback)

Argument Type Example
num - group or fix-
ture integer 1

intensity integer (0-255) 255
red integer (0-255) 255

- 556 -

API v1

green integer (0-255) 255
blue integer (0-255) 255
temperature integer (0-255) 255
fade float 2.0

path string (from
options)

"Default", "Linear", "Start", "End", "Braked", "Accelerated, "Damped,
"Overshoot"

Example:

Query.set_fixture_override({ "num": 1, "intensity": 255, "red": 255, "green": 0,
"blue": 0});

Note:Group 0 will set the levels of the 'All Fixtures' group

Clear RGB
Remove any overrides on fixtures or groups. Show

Lua
get_fixture_override(num)

get_group_override(num)

:clear([fade])

clear_all_overrides([fade])

Argument Type Example
num - group or fixture integer 1
fade float 2.0

Example:

ov = get_fixture_override(1) -- Get fixture 1

ov:clear() -- Clear the override on fixture 1

HTTP
DELETE /api/override

{

["target": target,]

["num": objectNum,]

["fade": fade]

}

If num is not included, target is ignored and all overrides are cleared.

Argument Type Example

- 557 -

Pharos Designer User Manual

target string (from options) "group" or "fixture"
num - group or fixture integer 1
fade float 2.0

JavaScript
clear_group_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_fixture_overrides({ ["num" :num,] ["fade": fade] }, callback)

clear_overrides({ ["fade": fade] }, callback)

Argument Type Example
num integer 1
fade float 2.0

Example:

Query.clear_overrides({"fade":3})

Set Text Slot
Set the value of a text slot used in the project. Show

Lua
set_text_slot(name, value)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

set_text_slot("myTextSlot", "Hello World!")

HTTP
PUT /api/text_slot

{

"name": name,

"value": value

}

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

- 558 -

API v1

JavaScript
set_text_slot({"name": name, "value": value}, callback)

Argument Type Example
name string (matching text slot name) "myTextSlot"
value string "HelloWorld!"

Example:

Query.set_text_slot("name:"myTextSlot", "value":"Hello World!")

Set BPS Button LED
Set the effect and intensity on BPS button LEDS. Show

Lua
get_bps(num):set_led(button, effect, [intensity], [fade])

Argument Type Example
num integer 1
button integer 1

effect OFF, ON, SLOW_FLASH, FAST_FLASH, DOUBLE_FLASH, BLINK, PULSE,
SINGLE, RAMP_ON, RAMP_OFF

FAST_
FLASH

intensity integer (1-255) 255
fade float 0.0

Example:

get_bps(1):set_led(1,FAST_FLASH,255) -- Set button 1 on BPS 1 to Fast Flash at
full intensity

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Control Value
Set the value on a TPC Slider or Color Picker. Show

Lua
set_control_value(name, [index,] value[, emitChange])

- 559 -

Pharos Designer User Manual

Argument Type Example
name - control Key string "slider001"
index - axis of movement (slider has 1, colour picker has 3) integer (1-3) (default 1) 1
value integer (0-255) 128
emitChange boolean (default false) false

Example:

set_control_value("slider001", 1, 128) -- set slider001 to half and don't fire
associated triggers

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Control State
Set the state on a TPC control. Show

Lua
set_control_state(name, state)

Argument Type Example
name - control Key string "slider001"
state - the state name form Interface string (from options in Interface) "Green"

Example:

set_control_state("slider001", "Green") -- set slider001 to a state called
"Green"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Control Caption
Set the caption on a TPC control. Show

- 560 -

API v1

Lua
set_control_caption(name, caption)

Argument Type Example
name - control Key string "button001"
caption - text to display string "On"

Example:

set_control_caption("button001", "On") -- set button001's caption to "On"

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Set TPC Page
Change the page on a TPC interface. Show

Lua
set_interface_page(number)

Argument Type Example
number integer 4

Example:

set_interface_page(4) -- change the page on the TPC's interface to page 4

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Disable Page
Disable the TPC touchscreen. Show

Lua

- 561 -

Pharos Designer User Manual

set_interface_enabled([enable])

Argument Type Example
enable boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Lock TPC
Lock the TPC (requires Lock code to be set within Interface). Show

Lua
set_interface_locked([lock])

Argument Type Example
lock boolean (default true) true

Example:

set_interface_enabled(false) -- disable the TPC's touch screen

set_interface_enabled() -- enable the TPC's touch screen

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Transition Content Target
Move or rotate a Content Target. Show

Lua

- 562 -

API v1

get_content_target(compositionNum, type)

:transition_rotation([offset], [count], [period], [delay], [useShortestPath])

:transition_x_position([offset], [count], [period], [delay])

:transition_y_position([offset], [count], [period], [delay])

Argument Type Example
compositionNum integer 1
type PRIMARY, SECONDARY, OVERLAY_1, OVERLAY_2 PRIMARY
offset integer 10
count integer 1
period integer 5
delay integer 0
useShortestPath boolean (default false) false

Example:

tar = get_composition_target(1,PRIMARY)

tar:transition_x_position(10,1,5) -- Move 10 pixels right in 5 seconds

tar:transition_y_position(10,1,5) -- Move 10 pixels down in 5 seconds

tar:transition_rotation(90,1,5) -- Rotate by 90 degrees in 5 seconds

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Beacon Controller
Beacons the controller (flashes Status LEDs or screen). Show

Lua
Not currently available.

HTTP
POST /api/beacon

JavaScript
toggle_beacon(callback)

- 563 -

Pharos Designer User Manual

Example:

Query.toggle_beacon()

Output To Log
Writes amessage to the controller's Log. Show

Lua
log([level,]message)

Argument Type Example

level option (LOG_DEBUG, LOG_TERSE, LOG_NORMAL, LOG_EXTENDED,
LOG_VERBOSE, LOG_CRITICAL, default LOG_NORMAL)

LOG_
CRITICAL

message string
"Some
message to
log."

Example:

log(LOG_CRITICAL, "This is a criticial message!") -- logs themessage at Critical log level

log("This is a normal message.") -- logs themessage at Normal log level.

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Send Variables To Web Interface
Sends data to the web interface in a JSON Object. Show

Lua
push_to_web(name, value)

Argument Type Example
name string "myVar"
value variable "Some value"

Example:

myVar = 15

push_to_web("myVar", myVar) -- will push the object {"myVar": 15}

- 564 -

API v1

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Park A Channel
Parks an output channel at a specified level. Show

Lua
Universe:park(channel, value)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1
value integer (0-255) 128

Example:

get_dmx_universe(1):park(1,128) -- Park channel 1 of DMX Universe 1 at 128 (50%)

HTTP
POST /api/channel

{

"universe": universeKey,

"channels": channelList,

"level": level

}

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"
level integer (0-255) 128

- 565 -

Pharos Designer User Manual

JavaScript
park_channel({ "universe": universeKey, "channels": channelList, "level": level },
callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"
value integer (0-255) 128

Example:

park_channel({ "universe": "dmx:1","channels": 1, "level":128}); // Park channel
1 of DMX Universe 1 at 128 (50%)

Unpark A Channel
Unparks an output channel. Show

Lua
Universe:unpark(channel)

Argument Type Example
Universe Universe object get_dmx_universe(1)
channel integer (1-512) 1

Example:

get_dmx_universe(1):unpark(1) -- Unpark channel 1 of DMX Universe 1 (it will go
back to normal output levels)

HTTP
DELETE /api/channel

{

"universe": universeKey,

"channels": channelList

}

Argument Type Example

universeKey
string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

"dmx:1"

- 566 -

API v1

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

channelList comma separated list(1-512) "1-3,5"

JavaScript
park_channel({ "universe": universeKey, "channels": channelList }, callback)

Argument Type Example

universeKey

string (in the form protocol:index for DMX, Pathport, sACN and Art-Net,
protocol:kinetPowerSupplyNum:kinetPort for KiNET and
protocol:remoteDeviceType:remoteDeviceNum for RIODMX)

l protocol can be dmx, pathport, sacn, art-net, kinet or rio-dmx
l remoteDeviceType can be rio08, rio44 or rio80

"dmx:1"

channelList comma separated list(1-512) "1-3,5"

Example:

park_channel({ "universe": "dmx:1","channels": 1}); //Unpark channel 1 of DMX Uni-
verse 1 (it will go back to normal output levels)

Disable an Output
Unparks an output channel. Show

Lua
disable_output(protocol)

enable_output(protocol)

Argument Type Example
protocol option (DMX, PATHPORT, ARTNET, KINET, SACN, DVI, RIO_DMX) DMX

Example:

disable_output(DMX) -- Disable the DMX output from the controller

HTTP
POST /api/output

{

"protocol": protocol,

"action": action

}

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"
action string ("enable", "disable") "disable"

- 567 -

Pharos Designer User Manual

JavaScript
disable_output({ "protocol": protocol }, callback)

enable_output({ "protocol": protocol }, callback)

Argument Type Example
protocol string ("dmx", "pathport", "art-net", "kinet", "sacn", "dvi", "rio-dmx") "dmx"

Example:

disbale_output({ "protocol": "dmx"}); // Disable the DMX output

enable_output({ "protocol": "art-net"}); // Enable the Art-Net Output

Set Timeline Source Bus
Set the time source for a timeline. Show

Lua
Timeline:set_default_source()

Timeline:set_timecode_source(timecodeBus[, offset])

Timeline:set_audio_source(audioBus, band, channel[,peak])

Argument Type Example
Timeline Timeline Object get_timeline(1)
timecodeBus TCODE_1 ... TCODE_6 TCODE_1
audioBus AUDIO_1 ... AUDIO_4 AUDIO_1
band integer (0=volume) 0
channel LEFT, RIGHT or COMBINED LEFT
peak boolean (default false) false

Example:

get_timeline(1):set_timecode_source(TCODE_1) -- Set the timecode source of timeline 1 to timecode bus 1

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

Enable Timecode Bus
Enables or disables a timecode bus. Show

- 568 -

API v1

Lua
set_timecode_bus_enabled(bus[, enable])

l bus is the timecode bus to enable or disable (TCODE_1 ... TCODE_6)
l enable determines whether the bus should be enabled or disabled (boolean, default true)

HTTP
Not currently available.

Use Run Script or Enqueue Trigger

JavaScript
Not currently available.

Use Run Script or Enqueue Trigger

API Subscriptions
Subscriptions allow data to be pushed to the web interface whenever there is a change within the project. show

Subscribe Timeline Status
Subscribes to changes in the timeline status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_timeline_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true
position number (milliseconds) 5000

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_timeline_status(function(t){

alert(t.num + ": " + t.state)

- 569 -

Pharos Designer User Manual

})

Subscribe Scene Status
Subscribes to changes in the scene status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_scene_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
state string ('none', 'running', 'paused', 'holding_at_end', 'released') 'running'
onstage boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_scene_status(function(s){

alert(s.num + ": " + s.state)

})

Subscribe Group Status
Subscribes to changes in group level, as set by theMaster Intensity action (any change is pushed to the interface).
Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_group_status(callback)

Returns an object with the following properties:

- 570 -

API v1

Property Return type Return Example
num number 1
name string 'Group 1'
level integer (0-255) 128

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_group_status(function(g){

alert(g.num + ": " + g.level)

})

Subscribe Remote Device Status
Subscribes to changes in Remote Device Online/Offline Status (any change is pushed to the interface). Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_remote_device_status(callback)

Returns an object with the following properties:

Property Return type Return Example
num number 1
type string ('RIO 08', 'RIO 44', 'RIO 80','RIO D', 'RIO A', 'BPS') 'Group 1'
online boolean true
serial string (of serial number) '001001'

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_remote_device_status(function(r){

alert(r.num + ": " + r.level)

})

Subscribe Beacon
Subscribes to Beacons (any change is pushed to the interface). Show

Lua
Not currently available.

- 571 -

Pharos Designer User Manual

HTTP
Not currently available.

JavaScript
subscribe_beacon(callback)

Returns an object with the following properties:

Property Return type Return Example
on boolean true

Callback is used to define a function that should be called whenever the data is received

Example:

subscribe_beacon(function(b){

if (b.on){

alert("Beacon Turned On")

else {

alert("Beacon Turned Off")

}

})

Subscribe Lua
The receiver for the push_to_web() Lua function. Show

Lua
Not currently available.

HTTP
Not currently available.

JavaScript
subscribe_lua(callback)

Returns an object with the following properties:

Property Return type Return Example
key as defined by push_to_web() value

Callback is used to define a function that should be called whenever the data is received

Example:

- 572 -

API v1

subscribe_lua(function(l){

key = Object.keys(l)[0]

value = l.key

alert(key + ": " + value)

})

API Objects
Below are the helper functions and objects in the project. show

Variant
A Lua object that allows a type and range to be associated with a variable. Show

Lua
See here.

HTTP
Not currently available.

JavaScript
Not currently available.

DateTime
A Lua object containing time data. Show

Lua
The DateTime object contains the following properties:

Property Return Type Return Example
.year integer 2017
.month integer (0-11) 5
.monthday integer (0-30) 8
.weekday integer(0-6) 1
.hour integer(0-23) 13
.minute integer (0-59) 21
.second integer (0-59) 46
.utc_timestamp integer 1494249706
.time_string string
.date_string string

- 573 -

Pharos Designer User Manual

HTTP
Not currently available.

JavaScript
Not currently available.

Printing An Enum
Lua functions to convert integers returned from some functions as text. Show

Lua
digital_input_to_string()

button_state_to_string()

Examples:

log(digital_input_to_string(get_input(1)))

str = button_state_to_string(get_bps(1):get_state(1))

HTTP
Not currently available.

JavaScript
Not currently available.

- 574 -

Legacy API

Legacy API
The Legacy API documentation is available here.

These APIs can be used if the Controller API Setting is set to Legacy.

- 575 -

Pharos Designer User Manual

Legacy HTTP API
Using the Legacy API, the following interaction between Custom web interfaces and the controller's project can be
setup.

Firing Triggers
Custom web pages can trigger the Controller by creating a hyperlink to "/trigger/xyz", where "xyz" is the trigger
number, as set in Triggers. Clicking on this hyperlink will fire the numbered trigger, if it exists, but will not cause the
page to refresh so there is no need to use Java Script tricks to prevent the page from flickering.

By default, conditions are tested when firing a trigger in this way, but this can be disabled by specifying
"conditions=0" in the URL query string. For example, "/trigger/1?conditions=0" will fire trigger 1 regardless of
whether its conditions are satisfied.

Firing Triggers With Variables
You can capture variables and inject them into the numbered trigger by specifying a "var" field in the query string.
The value of this field is expecting a comma-separated list of values, with each value in the format "abc:def" where
"abc" is the captured value and "def" is the range of the value (optional). If the value of "abc" is not a number, it is
treated as 0. If value of "def" is not a number, it is treated as 255.

For example, the URL "/trigger/1?var=14" will fire trigger number 1 and will inject the value 14. If this trigger had a
Start Timeline action that expected a variable to select the timeline, then it would start timeline 14.

In another example, the URL "/trigger/2?var=50:100" will fire trigger number 2 and will inject the value 50. If the
variable is used by an action that is expecting a value within a range, for example Set intensity expecting a level
between 'off' and 'full', then the injected variable will be treated as 50% since 50:100 = 50%.

You can also inject multiple variables. For example, "/trigger/2?var=50:100,3,4:16" will inject 50 (50%), 3 and 4
(25%).

If you want to inject a string to a variable, for example if you want to set the contents of a text slot, the characters
must be bound by double quotes (" or%22 if using character escaping). To include a " in the injected string youmust
prefix it with a backslash. To include a backslash, write two backslashes. Here are some examples for injecting
strings:

/trigger/1?var="hello" -> (hello)

/trigger/1?var=%22hello%22 -> (hello)

/trigger/1?var="hello \"world\"" -> (hello "world")

/trigger/1?var="hello\\world" -> (hello\world)

Anything after the closing " and before the next comma is ignored:

/trigger/1?var="hell"o,"world" -> (hell),(world)

If a closing quote is missing, the remaining string is used:

/trigger/1?var=1,"hello,2 -> (1),(hello,2)

Directly Controlling Outputs
Custom web pages can also directly control Timelines and Scenes without having to create triggers.

- 576 -

Legacy HTTP API

The options available are:

Start Timeline, Release Timeline, Pause Timeline, Resume Timeline, Start Scene and Release Scene

To perform these actions you can either type the URL directly into the address bar or set up a hyperlink with the
relevant link:

Timelines

URL is of the form <ip_address>/timeline/<action>/<usernumber>

Possible actions are start, release, pause and resume. The release action also has an optional 'fade' field in the
query string

Scenes

URL is of the form <ip_address>/scene/<action>/<usernumber>

Possible actions are start and release. The release action also has an optional 'fade' field in the query string

Examples

192.168,0.2/timeline/start/1

192.168.0.2/scene/release/2?fade=3

- 577 -

Pharos Designer User Manual

JavaScript Query Interface
The aim of the javascript library is to provide an abstraction to the web technologies used to communicate with the
controller and to provide an api which will not change. This allows us to change the way we communicate with the
controller without braking compatibility with existing custom web pages.

Usage
To use the javascript library include this line in the head of the html file.

<script src="/default/js/query.js"></script>

TheQuery object will then exist and queries can then bemade by calling the approriate method eg

Query.get_current_time(callback)

callback is a function that is called when the server responds to the request. This is required as all the requests
made to the controller are asynchronous. The response sent by the controller is given as the first argument of the
callback function and is in JSON format.

Authentication
If an api call is made that the current user does not have sufficient privileges tomake, the user will be redirected to
the page defined by the AuthFormLoginRequiredLocation directive in themain .htaccess file.

API

get_current_time(callback) Returns the current time and the number of milliseconds that the
controller has been on.

get_timeline_info(callback) Returns the name, length, time source and offset for all the
timelines in the project.

get_timeline_status(callback) Returns the position and status of all the timelines.
subscribe_timeline_status(call-
back) Callback is called every time the status of a timeline changes.

get_scene_status(callback) Returns the status of all the scenes in the project.
subscribe_scene_status(callback) Callback is called every time the status of a scene changes.
get_group_status(callback) Returns the status of all the groups in the project.
subscribe_group_status(callback) Callback is called every time the level of a group changes.

get_remote_device_status(callback) Returns the number and type of the remote devices registered to
this controller.

subscribe_remote_device_status
(callback)

A remote devicemessage is pushed every time the status of a
remote device changes.

get_text_slot(callback) Returns the name and value for all the text slots in the project.
set_text_slot(name, value) Sets the text slot with name to value

get_temperature(callback) Returns the temperature readings from the controller (TPC or
LPC X)

get_protocols(callback) Returns the protocols, universe names and universe ids used by
this controller.

get_output(type, key, callback) Returns the current output from a universe. Specify the universe

- 578 -

JavaScript Query Interface

using the type and key

park_channel(type, key, num,
value)

Parks the channels given by num in the universe specifed by type
and key to value, the channel can be a single channel, a range of
channels ("1-5") or a set of channels ("1,3,5,7") or any com-
bination of those e.g ("1,3,5-10")

unpark_channel(type, key, num)

Unparks the channels given by num in the universe specifed by
type and key, the channel can be a single channel, a range of
channels ("1-5") or a set of channels ("1,3,5,7") or any com-
bination of those e.g ("1,3,5-10")

fire_trigger(num, variables, test_
conditions) Fires the trigger given by num and passes any variables

run_command(cmd)
Runs the command given by cmd. This can either be parsed by
the command line parser, or be a lua command, depending on the
settings in designer.

subscribe_beacon(callback) Web interface receives amessage whenever the beacon
changes.

toggle_beacon() Toggles whether the beacon is on or not.

subscribe_lua(callback) Allows you to pass data to the web interface using the push_
to_web() Lua script. Example below

get_system_info(callback) Returns the system information

get_lua_variables(var,callback)
Returns the variable/s defined in var. This can be a single string
(e.g. "running") or an array of strings (e.g. ["running", "active",
"myVar"]

Universe Types:

The type is entered as one of the constants below e.g. get_output(DMX,1,callback)

l DMX
l PATHPORT
l ARTNET
l KINET
l SACN
l DVI
l RIO_DMX

Universe Keys:

The Universe key is a JSON object containing the following data:

l DMX: {index : 1} or {index : 2}
l PATHPORT: {index : num} where num = the universe number
l ARTNET: {index : num} where num = the universe number
l KINET: {kinet_port : port, kinet_power_supply_num : num} where port is the port number on the power supply
and num is the ID number of the power supply

l SACN: {index : num} where num = the universe number
l RIO_DMX: {remote_device_num : num, remote_device_type : type} where num is the address of the RIO, as
set on the address wheel on the front of the RIO and type is one of the the following types:

l RIO80
l RIO44
l RIO08

- 579 -

Pharos Designer User Manual

Examples
Using Push_to_web()
The Lua Script has the function push_to_web(name,value).

This allows you to send some data to the web interface as a JSON packet

push_to_web(name,value) sends {name:value} to the interface.

Within the web interface, use the following Javascript to get the information:

Query.subscribe_lua(function(x){

var NAME = Object.keys(x)[0] // Gets the name from the JSON packet and
stores it as a variable

var VALUE = x[NAME] // Gets the value from the JSON packet and stores it as
a variable

// You will then need to do something with the stored information

})

Fire A Trigger With Multiple Variables
If you have a trigger which is expectingmultiple variables, you can add them to the fire_trigger() function as a string:

Query.fire_trigger(1, '"var1", 2, 3, "var4"')

- 580 -

JavaScript Query Examples

JavaScript Query Examples
In the examples below, we will query the controller for the required information and display the returned object in the
browser's console before displaying the relevant information in a popup.

In the examples, the callback functions have been defined at the time that the query is made, but these can be
defined separately, as below:

function getTimeRespone(t){
alert(datetime);

}
Query.get_current_time(getTimeResponse)

Function Example Response JavaScript
get_current_
time(callback)

{"data":{

"datetime":"03 Feb 2016 22:41:20",

"uptime":208171

},"request":"current_time"}

Query.get_current_time(
function(t){

console.log(t);

alert(t.datetime);

alert(t.uptime);

});
get_timeline_
info(callback)

{"data":{

"response":[

{

"length":"P00H01M00.00s",

"name":"Timeline 1",

"num":1,

"timeOffset":"P00H00M00.00s",

"timeSource":{

"type":"internal"

}

},

{

"length":"P00H00M10.00s",

"name":"Timeline 2",

"num":2,

"timeOffset":"P00H00M00.00s",

"timeSource":{

"bus":0,

"timeFormat":"Unknown",

"type":"Timecode"

}

Query.get_timeline_info(

function(t){

console.log(t); //
Logging the incoming
object

var output = ""; //
Creating a variable
to put information
in

for (var i = 0; i <
Object.keys
(t.response).length;
i++) { // Iterate
over the object to
extract information

output +=
t.response
[i].num + " - "
+ t.response[i]
["name"] + "\n";
// Add number
and name to the
output variable

};

alert(output); //
Display the output
variable

}

);

- 581 -

Pharos Designer User Manual

}

]

},"request":"timeline_info"}
get_timeline_
status(call-
back)

{"data":{

"timelines":[

{

"active":false,

"group":"",

"name":"Timeline 1",

"num":1,

"position":0,

"released":false

},

{

"active":false,

"group":"",

"name":"Timeline 2",

"num":2,

"position":0,

"released":false

},

{

"active":false,

"group":"",

"name":"Timeline 3",

"num":3,

"position":0,

"released":false

}

]

},"request":"timeline"}

Query.get_timeline_status(
function(t){

console.log(t);

var output = ""; //
Creating a variable to
put information in

for (var i = 0; i <
Object.keys
(t.timelines).length;
i++) { // Iterate over
the object to extract
information

if (t.timelines
[i].active) { //
only add active
timelines

output +=
t.timelines
[i].num + " - "
+ t.timelines[i]
["name"] + "\n";
// Add number
and name to the
output variable

};

};

alert(output); //
Display the output
variable

});

get_timeline_
status(timeline
,callback)

{"data":{

"timelines":[

{

"active":false,

"group":"",

"name":"Timeline 1",

Query.get_timeline_status
(1, function(t){

console.log(t);

var output = ""; //
Creating a variable to
put information in

for (var i = 0; i <

- 582 -

JavaScript Query Examples

"num":1,

"position":0,

"released":false

}

]

},"request":"timeline"}

Object.keys
(t.timelines).length;
i++) { // Iterate over
the object to extract
information

if (t.timelines
[i].active) { //
only add active
timelines

output +=
t.timelines
[i].num + " - "
+ t.timelines[i]
["name"] + "\n";
// Add number
and name to the
output variable

};

};

alert(output); //
Display the output
variable

});
subscribe_
timeline_status
(callback)

{"broadcast":"timeline",

"data":{

"active":{

"force_poll":false,

"halted":false,

"onstage":true,

"running":true

},

"num":1,

"position":60,

"released":false

}

}

Query.subscribe_timeline_
status(function(r){

console.log(r);

alert("TL" + r.num + "
changed");

})

get_scene_
status(call-
back)

{"data":{

"scenes":[

{

"active": true,

"name":"Scene 1",

"num":1,

"onstage":true,

Query.get_scene_status(
function(t){

console.log(t)

var output = "" //
Creating a variable to
put information in

for (var i = 0; i <
Object.keys
(t.scenes).length; i++)
{ // Iterate over the

- 583 -

Pharos Designer User Manual

"released": false

},

{

"active": true,

"name":"Scene 2",

"num":2,

"onstage": false,

"released": false

},

{

"active": false,

"name":"Scene 3",

"num":3,

"onstage": false,

"released": false

}

]

},"request":"scene"}

object to extract
information

output += t.scenes
[i].num + " - " +
t.scenes[i]["name"]
+ "\n" // Add number
and name to the
output variable

};

alert(output) //
Display the output
variable

});

subscribe_
scene_status
(callback)

{"broadcast":"scene",

"data":{

"active": true,

"num":1,

"onstage": true,

"released": false

}

}

Query.subscribe_scene_
status(function(r){

console.log(r)

if (r.onstage){

alert("Scene " +
r.num + " started")

} else {

alert("Scene " +
r.num + " released")

}

})
get_group_
status(call-
back)

{"data":{

"groups":[

{

"level":100,

"name":"All Fixtures",

"num":0

},

{

Query.get_group_status(
function(t){

console.log(t)

var output = "" //
Creating a variable to
put information in

for (var i = 0; i <
Object.keys
(t.groups).length; i++)
{ // Iterate over the
object to extract
information

- 584 -

JavaScript Query Examples

"level":100,

"name":"All LED - RGB 8 bit",

"num":0

}

]

},"request":"group"}

output += t.groups
[i].num + " - " +
t.groups[i]["name"]+
" - " + t.groups
[i].level + "\n" //
Add number and name
to the output
variable

};

alert(output) //
Display the output
variable

});
subscribe_
group_status
(callback)

{"broadcast":"group",

"data":{

"level":40,

"name":"All LED - RGB 8 bit",

"num":0

}

}

Query.subscribe_group_
status(function(r){

console.log(r);

alert(r["name"] + " set
to " + r.level + "%");

})

get_remote_
device_status
(callback)

{"data":{

"remote_devices":[

{

"num":1,

"online":false,

"serial":"",

"type":"RIO 80"

},

{

"num":1,

"online":true,

"serial":"",

"type":"BPS"

},

{

"num":2,

"online":true,

"serial":"",

"type":"BPS"

}

Query.get_remote_device_
status(function(t){

console.log(t)

var output = "Remote
Devices: \n"

for (var i = 0; i <
Object.keys(t.remote_
devices).length; i++) {

output += t.remote_
devices[i]["type"] +
" " + t.remote_
devices[i]["num"] +
":" + t.remote_
devices[i]["serial"]
+ "\n"

};

alert(output);

});

- 585 -

Pharos Designer User Manual

]

},"request":"remote_device"}
subscribe_
remote_device_
status(call-
back)

{"broadcast":"remote_device",

"data":{

"num":1,

"online":true,

"serial":"011050",

"type":"RIO 80"

}

}

Query.subscribe_remote_
device_status(function(r)
{

console.log(r)

if(r.online){

alert(r["type"] + "
" + r.num +
"online")

} else {

alert(r["type"] + "
" + r.num +
"offline")

}

})
get_text_slot
(callback)

{"data":{

"text_slots":[

{

"name":"text1","value":"Hello"

},

{

"name":"text2","value":"World"

}

]

},"request":"text_slot"}

Query.get_text_slot(
function(t){

console.log(t);

var output = ""; //
Creating a variable to
put information in

for (var i = 0; i <
Object.keys(t.text_
slots).length; i++) {
// Iterate over the
object to extract
information

output +=t.text_
slots[i]["name"]+ "
- " + t.text_slots
[i]["value"] + "\n";
// Add number and
name to the output
variable

};

alert(output); //
Display the output
variable

});
set_text_slot
(name, value)

No Response Query.set_text_slot("tex-
t1","Test") // Sets the
value of the text slot
"Text1" to "Test"

get_temperature
(callback)

{"data":{

"temp":{

"ambient_temp":24.75

}

Query.get_temperature(
function(h){

console.log(h);

alert(h.temp.ambient_
temp);

- 586 -

JavaScript Query Examples

},"request":"temperature"} });
get_protocols
(callback)

{"data":{

"outputs":[

{

"name":"Art-Net",

"type":4,

"universes":[

{

"id":1,

"name":"1"

},

{

"id":2,

"name":"2"

},

]

}

]

},"request":"protocol"}

Query.get_protocols(
function(t){

console.log(t)

var output =""

for (var i = 0; i <
Object.keys
(t.outputs).length;
i++) {

output += t.outputs
[i]["name"] + " in
use\n"

};

alert(output);

});

get_output(id,
callback)

{"data":{

"channels":[

"0",

"128",

"255",

"50",

" ", -- This is an unpatched
channel

... 512 entries in total

" "

]

},"request":"output"}

Query.get_output(2,
function(t){

console.log(t);

alert("Channel 1 = " +
t.channels[0]);

});

park_channel
(type, key,
num, value)

No Response Query.park_channel(DMX,
{index:1},1,128) // Set
channel 12 on DMX Universe
1 to 128.

Query.park_channel(DMX,
{index:1},"1-10,15",50) //
Set channels 1-10 and 15
to 50.

unpark_channel
(type, key,

No Response Query.unpark_channel(DMX,
{index:1},12) // Release

- 587 -

Pharos Designer User Manual

num) park of channel 12 on
DMX universe 1.

fire_trigger
(num, vari-
ables, test_con-
ditions)

No Response Query.fire_trigger(1) //
Fire trigger 1

Query.fire_trigger
(2,"255,255,128,0",true)
// Fire trigger 2,
injecting 4 variables
(255,255,128,0) and
testing the conditions of
the trigger.

run_command
(cmd)

To use this
function, go
Project > Web
Interface in
Designer and
check "Parse
command line
submissions as
Lua commands"

No Response Query.run_command('get_
timeline(1):start()') //
Run a Lua script on the
controller.

Note: The Script must be
contained within quotation
marks (' or ").

subscribe_
beacon(call-
back)

{"broadcast":"beacon",

"data":{

"on":true

}

}

Query.subscribe_beacon
(function(r){

console.log(r);

var output = "";

if (r.on){

alert("Beacon On")

}else{

alert("Beacon Off")

}

})
toggle_beacon() No Response Query.toggle_beacon() //

The beacon on the con-
troller will be toggled

subscribe_lua() {name:value} -- As specified in push_
to_web() function

Query.subscribe_lua
(function(x){

console.log(x);

alert(Object.keys(x)[0]
+ " = " + x[0]);

})
get_system_info
()

{"data":{

"cf_card_size_kb":1957112,

"controller_number":1,

"date":"11 Apr 2016",

"firmware_version":
{"major":2,"minor":1,"point":0},

"hardware_type":"LPC",

Query.get_system_info
(function(x){

console.log(x);

alert(Object.keys(x)[0]
+ " = " + x[Object.keys
(x)[0]]);

})

- 588 -

JavaScript Query Examples

"network_interface":{

"gateway":"0.0.0.0",

"ip_address":"172.30.2.243",

"subnet_mask":"255.255.0.0"

},

"project":{

"author":"",

"name":"",

"upload_date":"2016-04-11T15:12:53",

"uuid":"{f21f3181-7b71-4f45-bdf3-
d96db0e9e7b4}"

},

"serial_number":"0100992",

"sunrise":"06:58:00",

"sunset":"19:05:00",

"time":"15:12:55"

},"request":"system"}
get_lua_vari-
ables(var, call-
back)

{"data":{

"count":96,

"count2":64

},"request":"lua"}

Query.get_lua_variables
(["count","count2"],
function(x){

console.log(x)

})

- 589 -

Pharos Designer User Manual

Trigger Programming Guide
Introduction
The Pharos Controllers offer many useful show control capabilities. Frequently it is the ability to cope with the
particular show control needs of a project that is the critical factor in selecting a control system.

Show control broadly consists of two tasks. First we need to be able to interface with other devices, whichmay
either be triggering us or be under our control. The Pharos Controller supports most of the core interfaces typically
used for show control, either directly on the unit (contact closures, RS232, MIDI, TCP/IP, time and date) or Remote
Devices. Within the Triggers screen of the Designer software we can configure the Controller to detect particular
triggers and how to respond to them.

Second we need to be able tomake decisions. These could be simple choices between two alternatives - perhaps a
contact closure needs to trigger a different timeline depending on whether it is during the day or during the night.
Within the Triggers screen we support a range of conditions that can be used to quickly implement this sort of logical
decisionmaking. We also provide a facility to treat values received on an input as a variable that can be used to alter
the behaviour of actions - such as using a number received via RS232 to select a particular timeline.

The standard capabilities offered in the Triggers screen are extensive, but a good show control system has the
ability to cope with situations that are anything but standard. Within the Pharos system when things get non-
standard then we can use scripting.

Script is a simple programming language that allows users to extend the functionality of the Pharos system
themselves. We use a freely available programming language called Lua. Anyone who has ever worked with a
programming language will find all the typical tools are available, and it should be straightforward to pick up for those
who have not. On top of the core Lua syntax we have added some dedicated Pharos functions that allow scripts to
work directly with the capabilities of a Controller.

Not every problem requires script, but there are few show control problems that can't be solved using script where
necessary. A few examples of situations where youmight want to use script include:

l Making a single contact closure start a different timeline each time
l Make a timeline loop a set number of times and then release
l Track motion sensor activity over a period of time
l Inverting a DMX input before it is used with a Set Intensity action
l Interpreting data from awind direction sensor
l Using a table of times for high and low tide to control bridge lighting
l Implementing an interactive game for a sciencemuseum

Wewill use some of the situations as examples below.

The Basics
There are a few basic things you need to know straight away. If any of them are not immediately clear then don't
worry - there are lots of examples of how to apply them in the following section.

Lua scripts are written as simple text files using any text editor. It is standard practice to use a .lua filename
extension though this is not required. These text files can be loaded directly into the Script Editor within Designer.

- 590 -

Trigger ProgrammingGuide

Comments

It is good practice to include readable comments in your scripts so that you (or anyone else) will be able to easily tell
what you were aiming to achieve. In Lua everything after two dashes on a line is treated as a comment.

-- This is a comment
This = is + not - a * comment -- but this is!

The whole point of comments is that they have no effect on the behaviour of the script. But I am introducing them
first so that I can use them within the examples that follow.

Variables

If you want to store a piece of data - whether it is a number, some text or just true or false - then you use a variable.
You create a variable simply by giving it a name and using it in your script. A variable can store any type of data just
by assigning it.

firstVariable = 10 -- assign a number
anotherVariable = "Some text" -- assign a string

When you next use these names then they will have the values that you assigned to them:

nextVariable = firstVariable + 5 -- value of nextVariable will be 15

Note that names are case-sensitive (i.e. capitals matter!), and once you have named a variable once then any time
you use the same name you will be referring to the same variable - in programming terms it is global. This even
applies across different scripts - so you can assign a number to a variable called bob in one script and then use the
number in another script by referencing bob.

One of themost common errors when writing scripts is trying to use a named variable before it has been assigned a
value - this will result in an error when the script is run. It is also very easy to use the same name in two different
places and not realise that you are actually reusing a single variable. (There is a way of dealing with this for names
you want to reuse that we will touch on later.)

Arithmetic

Scripts will often need to do some arithmetic - even if it is something very basic like keeping a counter of how many
times it is run:

myCount = myCount + 1

All of the standard arithmetic operations are available. There is also a library of mathematical functions available
should it be required, which includes things like random number generators.

Flow Of Control

In most scripts there will be one or more points where you want to make choices. Lua provides four useful structures
for this. Themost common is if, where you can choose which path to take through the script by performing tests.

if myNumber < 5 then

- 591 -

Pharos Designer User Manual

-- first choice
elseif myNumber < 15 and myNumber > 10 then

-- second choice
else

-- third choice
end

The other control structures all involve blocks of script that need to be repeated a certain number of times. Themost
straightforward is the while loop, which will repeat the enclosed block of script as long as the test at the start is
true:

myNumber = 10
while myNumber > 0 do

-- some useful script
myNumber = myNumber - 1 -- myNumber counts down

end

The repeat until loop is really exactly the same, but here the test is done at the end of each loop and it will
repeat while the test is false.

myNumber = 1
maxNumber = 4096
repeat

-- some useful script
myNumber = myNumber * 2

until myNumber == maxNumber

Here it is worth noting the use of two equal signs == to mean 'is equal to' in a test. This is different from a single
equal sign, which is used for assigning values. It is another very commonmistake to assign a value when youmeant
to test if it was equal, and it can be hard to spot because it is valid syntax that will not generate an error. The opposite
of ==meaning 'is equal to' is ~=meaning 'is not equal to'.

The other control structure is the for loop, which has a number of powerful options beyond the scope of what we
need here. But it is worth seeing how it can be used to do basic loops in a slightly neater way:

for i = 1,10 do
-- some useful script where i has value 1 to 10

end

A final word of caution regarding loops: be careful that you do not write a loop that will never exit! This is all too easy
to do by forgetting to increment a counter value that you are using in the test for the loop. If your script has one of
these 'infinite loops' then the Controller will get stuck when it runs the script and be reset by the watchdog feature
(provided this is enabled). Script is a tool for the grown-ups and it will not protect you from doing silly things - so
make sure you test your scripts carefully before leaving them to run.

Tables

Often you will need to store a set of values within a script - thesemight be a list of timeline numbers or the current
states of all the contact closure inputs. Lua allows us to storemultiple values within a single named variable and this
is called a Table.

A table has to be created before it can be used:

- 592 -

Trigger ProgrammingGuide

firstTable = {} -- creates an empty table
secondTable = { 5,3,9,7 } -- a table with 4 entries

You can then access entries within the table by indexing into it - signified by square brackets. The number within the
square brackets identified which entry within the table you want to use or modify.

x = secondTable[3] -- x now equals 9 (3rd entry)
firstTable[1] = 5 -- entry 1 now has value 5
firstTable[7] = 3 -- entry 7 now has value 3
x = firstTable[1] + firstTable[7] -- x now equals 5 + 3

Note that we are allowed to assign values to entries within the table without doing anything special to change the
size of the table. We can keep adding elements to the table as needed and Lua will take care of it for us. This makes
it possible to write scripts using tables that will work regardless of how many entries there are in the table (e.g. a list
of 4 timeline numbers or of 40).

Tables are particularly powerful when used together with the loops we looked at in the previous section. For example
if I have a table of numbers and I wanted to find the smallest then I could use the following script:

numbers = { 71,93,22,45,16,33,84 }

smallest = 10000 -- initialise with large number
i = 1 -- use to count loops
while numbers[i] do

if numbers[i] < smallest then
smallest = numbers[i]

end
i = i+1

end

This is our first really functional piece of script and there are a couple of things worth noting.

l The first entry in a table is accessed using the number one (i.e. myTable[1]). This may seem obvious - but
some other programming languages start counting from zero.

l As we increment the variable i each time around the loop this means wewill be looking at a different entry in
the table each time around. The test at the start of my while loop is written to work regardless of how many
entries there are in the table. When you use a table entry in a test like this then it will be true as long as the
entry has some value (even if the value is zero) and false if there is no value there at all.

Functions

Within script there are a whole range of pre-defined operations that you can call when writing your own scripts. Some
of these are provided by the Lua language and are fully described in its documentation. Others have been provided
by Pharos to allow you to interact with the Controller from script and are fully described in themanual. They are all
called functions and accessed using a similar syntax. For example:

x = math.random(1,100)

This will assign variable x a value that is a random number between 1 and 100. The function math.random() is a
standard function provided by Lua and we can control its behaviour by passing in an argument - in this case the
values 1 and 100 to tell it the range within which wewant our random number to fall.

t = 5

- 593 -

Pharos Designer User Manual

get_timeline(t):start()

start_timeline is one of the functions provided by Pharos and it will start the timeline with the number passed in
as an argument.

It is also possible to define your own functions as part of script. Youmight do this if there is a block of script that you
know you will need to reuse in a lot of different places. It will bemuch easier to write the script in one place and then
call it from wherever you need it.

function diff(a, b)
if a > b then

return a - b
else

return b - a
end

end

v1 = 10
v2 = 6
v3 = diff(v1,v2)

Note that the script containing the function definitionmust have been run before we try to call the function. It is often
useful to have a script that is run by the Controller startup trigger which defines your functions and creates any tables
- other scripts that are run by triggers canmake use of those functions and tables.

More Information
In this document we have only covered the basic concepts that are needed to understand or write useful scripts for
the Controllers. For more extensive information on the Lua language there are two documents, both of which are
available online at http://www.lua.org or can be bought as books from Amazon.

l Lua 5.3 ReferenceManual
l Programming in Lua

- 594 -

http://www.lua.org/

Lua API (Triggering)

Lua API (Triggering)
Weuse a scripting language called Lua, which has been extended to provide functionality specific to the Pharos
Controllers. Tutorials and referencemanuals for the Lua language can be found at www.lua.org. Wewill not attempt
to document the Lua language here, but just the Pharos specific extensions. Please contact support if you need
assistance with preparing a script or if you would like some examples as a starting point.

Lua Script Editor
The Lua Script Editor allows you to edit scripts from Triggers, Conditions and Actions within Designer. The Script
Editor is launched by pressing the Script Editor button on the Trigger Toolbar:

Themain area of the editor is the code editor where you enter the source code of the script. The code editor will
colour the Lua syntax to aid readability. Standard clipboard shortcuts and undo/redo are supported.

To create a new script for use in Conditions or Actions click New Script.

Scripts can be opened using the Open option and closed with the on the Script Tab.

To import a Lua script from an external file, use Import.

To save a Lua script to a file, use Export.

To compile the script and check for syntax errors, use Build. If there are errors in the script, they will be displayed at
the bottom of the window.

Changes to scripts are saved automatically.

Pharos Extensions For Trigger Scripts
Syntax
Where a function returns anObject (e.g. get_timeline(num)) additional functions and variables become available. To
access a function, add a colon (:) between the functions:

get_timeline(1):start() – This will get the timeline object for timeline 1 and
apply the start function to it (starting timeline 1)

To access a variable, add a period (.) between the function and the variable:

get_timeline(1).is_running – This will return a boolean value indicating

- 595 -

http://www.lua.org/

Pharos Designer User Manual

whether timeline 1 is running

Variants
A variant is a user object within the Lua Scripting environment which includes information about what type of
information is stored.

Variant(val, [range]) creates a Variant, val can be a number or a string. If it is a number then
including range will create an Integer Variant, otherwise it is a Real Variant

:is_integer() returns a boolean (true if the Variant is an integer and false if it isn't)
:is_real() returns a boolean (true if the Variant is a real number and false if it isn't)
:is_string() returns a boolean (true if the Variant is a string and false if it isn't)
:is_ip_address() returns a boolean (true if the Variant is an IP Address and false if it isn't)
.integer getter/setter for integer values
.range getter/setter for the range of an integer value
.fraction getter/setter for an integer converted to a fraction
.real getter/setter for real values
.string getter/setter for string values

.ip_address getter/setter for IP Addresses (a string in dotted decimal form
e.g."192.168.1.23")

When a variant is returned by a function, you can run one of the above functions to determine the data type or use a
variable to get the data out of the object:

get_trigger_variable(1).integer

Formore details, see Variants.

Timeline Management
Note: The default fade time for these is 2 seconds unless specified.

stop_all([fade]) stops all timelines and scenes running in the project
stop_all_timelines([fade]) stops all timelines with optional fade time
get_timeline(num) returns a Timeline object

:start() starts the timeline
:stop([fade]) stops the timeline with optional fade time
:pause() pauses the timeline
:resume() resumes the timeline
:set_default_source() set which bus is used for the timeline's position
:set_timecode_source(bus [, off-
set])

set the timecode bus with optional offset

:set_audio_source(bus, band,
channel [,peak])

set the time source of the timeline to an audio bus.

.name returns the timeline's name

.length returns the timeline's length

- 596 -

Lua API (Triggering)

.source_bus

returns information about the timeline's time source (depending upon
which source is configured)

.timecode_format

.audio_band

.audio_channel

.audio_peak

.time_offset

.is_active
returns a boolean value based on whether the timeline is reporting as act-
ive

.is_running
returns a boolean value based on whether the timeline is reporting as run-
ning

.is_onstage
returns a boolean value based on whether the timeline is reporting as
onstage

.is_released
returns a boolean value based on whether the timeline is reporting as
released

.is_halted
returns a boolean value based on whether the timeline is reporting as hal-
ted or paused

.position returns the current position of a timeline

.priority returns the timeline's priority

Timecode Bus Options:

l TCODE_1
l TCODE_2
l TCODE_3
l TCODE_4
l TCODE_5
l TCODE_6

Audio Bus Options:

l AUDIO_1
l AUDIO_2
l AUDIO_3
l AUDIO_4

Audio Channel Options:

l LEFT
l RIGHT
l COMBINED

Scene Management
Note: The default fade time for these is 2 seconds unless specified.

stop_all([fade]) stops all timelines and scenes running in the project
stop_all_scenes([fade]) releases all scenes being played back
get_scene(num) returns a Scene object

:start() starts the scene
:stop[fade]) stops the scene with optional fade time

- 597 -

Pharos Designer User Manual

:toggle() toggles the scene
.is_onstage returns a boolean value based on whether the scene is onstage

Overrides
Note:Overrides default to IRGB levels of (0,255,255,255), and if you don't change a level it will be at its default
value.

Note: The default fade time for these is 2 seconds unless specified.

clear_all_overrides([fade]) Clears all overrides with optional fade time
get_group_override(num) returns an override object for the specified group number
get_fixture_override(num) returns an override object for the specified fixture number

:set_irgb(intensity,red, green, blue
[, fade[,crossfade]])

overrides the IRGB values with those specified, with an optional fade
time and crossfade path

:set_intensity(intensity, [, fade
[,crossfade]])

overrides the fixtures intensity with the specified value with an optional
fade time and crossfade path

:set_red(red [, fade[,crossfade]])
overrides the red value with the specified value, with an optional fade
time and crossfade path

:set_green(green [, fade[,cross-
fade]])

overrides the green value with the specified value, with an optional fade
time and crossfade path

:set_blue(blue [, fade[,crossfade]])
overrides the blue value with the specified value, with an optional fade
time and crossfade path

:clear() clears all overrides from the group/fixture

Crossfade Paths:

l "Linear"
l "NonDim"
l "5% Preheat"
l "10% Preheat"
l "Accelerate"
l "Brake"
l "Damped"
l "Square Law"

Inputs

get_input(input) returns the state of the local controller's inputs (true = high, false = low)
get_dmx_input(channel) returns the level of the dmx input channel
get_rio(type, number) returns a RIO object

:get_input(input) returns the state of the RIO's inputs (true = high, false = low)

RIO Types:

l RIO80
l RIO44
l RIO08

- 598 -

Lua API (Triggering)

Lighting Outputs

get_dmx_universe(index) returns a universe object for the specified universe number
get_artnet_universe(index) returns a universe object for the specified universe number
get_pathport_universe(index) returns a universe object for the specified universe number
get_sacn_universe(index) returns a universe object for the specified universe number
get_kinet_universe(powersupply,
port)

returns a universe object for the specified power supply (power supply num-
ber in Patch) and port number

:park(channel,value) parks the specified channel
:unpark(channel) unparks the specified channel
:get_channel_value(channel) returns the current value of the specified channel

TPC

set_control_caption(controlName,
value)

set the control caption to value = "string"

set_control_state(controlName,
name)

set the control state to name ="state name"

set_control_value(controlName[,
index], value[,ex-
ecuteChangeTriggers])

set the control value to value with optional index, and optionally execute
change triggers

set_interface_page(num) sets the local TPC to the specified page number
set_interface_locked([lock]) locks the local TPC, lock = boolean, default = true
set_interface_enabled([enable]) enables the local TPC, enable = boolean, default = true

Project Properties

get_current_project() returns a project object
.name returns the project name
.author returns the project author

get_current_controller() returns a controller object
.number returns the controller's number
.name returns the controller's name

Remote Devices

get_bps(num) returns a BPS object

:get_state(button)
returns the current state of the specified button as an integer:(0 =
Pressed, 1 = Held, 2 = Repeat, 3 = Released)

:set_led(button, effect [, intensity]
[, fade])

set the specified button to an effect with optional intensity and fade time

Button Effects:

l OFF
l ON
l SLOW_FLASH
l FAST_FLASH

- 599 -

Pharos Designer User Manual

l DOUBLE_FLASH
l BLINK
l PULSE
l SINGLE
l RAMP_ON
l RAMP_OFF

Others

enqueue_trigger(num[,variables]) enqueue trigger num, optionally passing variables
get_resource_path(filename) returns the path to a file on the SD card (see storing data example)
set_timecode_bus_enabled(bus,
[enable])

enables the specified timecode bus, enable = boolean

get_trigger_variable(index) returns a variant captured by a trigger
log(string) writes string to the controller's log
push_to_web(name,value) sends a variable to the web interface in JSON format, eg. { name : value }
set_text_slot(name, text) sets the value of text slot "name" to "text"
get_text_slot(name) returns the current text within a text slot
is_controller_online(controller_num-
ber)

returns true if the specified controller has been detected online

Timecode Bus Options:

l TCODE_1
l TCODE_2
l TCODE_3
l TCODE_4
l TCODE_5
l TCODE_6

Time Namespace

All the functions below must start with "time."

Note: time is a reserved variable name. If you create a Lua variable called time, it will prevent these functions from
running

time.get_current_time() returns a date/time object
time.get_sunrise() returns a date/time object
time.get_sunset() returns a date/time object
time.get_civil_dawn() returns a date/time object
time.get_civil_dusk() returns a date/time object
time.get_nautical_dawn() returns a date/time object
time.get_nautical_dusk() returns a date/time object
time.get_new_moon() returns a date/time object
time.get_first_quarter() returns a date/time object
time.get_full_moon() returns a date/time object
time.get_third_quarter() returns a date/time object

.year returns the year of the date/time object

- 600 -

Lua API (Triggering)

.month returns themonth of the date/time object

.monthday returns the day of themonth of the date/time object

.weekday
returns the day of the week of the date/time object (0 = Sunday, 1 =
Monday etc.)

.hour returns the hour of the date/time object

.minute returns theminute of the date/time object

.second returns the second of the date/time object

.utc_timestamp returns the utc_timestamp of the date/time object
time.is_dst returns true if the current location is in DST
time.gmt_offset returns the GMT offset for the controller's location

Example
The script below will from a string in the format hh:mm containing the current time returned by the controller

NOW = time.get_current_time().hour .. ":" .. time.get_current_time().minute

Hardware Namespace

All the functions below must start with "hardware."

Note: hardware is a reserved variable name. If you create a Lua variable called hardware, it will prevent these
functions from running

hardware.get_last_power_on() returns a date/time object (see above)
hardware.type returns the controller's type
hardware.channel_capacity returns the controller's channel capacity
hardware.serial_number returns the controller's serial number
hardware.memory_total returns the controller's total memory
hardware.memory_used returns the controller's usedmemory
hardware.memory_free returns the controller's freememory
hardware.memory_card_size returns the controller's memory card size
hardware.bootloader_version returns the controller's bootloader version
hardware.firmware_version returns the controller's firmware version
hardware.reset_reason returns the controller's reset reason
hardware.ip_address returns the controller's IP address
hardware.subnet_mask returns the controller's subnet mask
hardware.default_gateway returns the controller's default gateway

- 601 -

Pharos Designer User Manual

Scripting Examples
In this section wewill go through a number of practical examples of how script can be used with a Controller. These
examples are all based on real projects that are installed and working. They do get progressively more involved, so
do not worry if you don't follow the later ones - you will still be able to use script successfully to solvemany
problems.

If you are working through this document on your own then look out for where I ask a question and rather than reading
straight on I recommend stopping and trying to answer it yourself. You will only get truly comfortable with writing
scripts by doing it!

Conditions
Running A Trigger 50% Of The Time

The script below can be used to only run the trigger 50% of the time randomly

-- returns true randomly, 50% of the time

return math.random(1,2) == 1

Actions
Cycling Through Different Timelines

Weare installing a wall of RGB LED fixtures in a children's play area. There is a single large button that the kids are
supposed to press. Each time they press it they should get a different colour or effect on the wall.

Each colour or effect would be programmed as a different timeline in Designer. The button will connect to a contact
closure and so wewill have a single Digital Input trigger. Rather than starting a timeline directly we will instead run
the following script:

-- which timelines should we cycle through?
timeline = { 22, 14, 24, 16, 15, 17, 21 }
n_timeline = 7

-- on first time of running, initialise index
if not index then

index = 1
end

-- start the timeline whose number is at entry 'index'

get_timeline(timeline[index]):start()

-- increment index
index = index + 1

-- should we go back to the beginning of the table?
if index > n_timeline then

- 602 -

Scripting Examples

index = 1
end

How would this change if we wanted each button press to choose a timeline at random rather than cycling through
them in order?

-- which timelines should we cycle through?
timeline = { 22, 14, 24, 16, 15, 17, 21 }
n_timeline = 7

-- use the random function to set index
index = math.random(1,n_timeline)

-- start the timeline whose number is at entry 'index'
get_timeline(timeline[index]):start()

Of course if the timeline selection is truly random then it will sometimes select the same timeline twice in a row. If
we wanted to prevent this from happening how could we do it?

-- which timelines should we cycle through?
timeline = { 22, 14, 24, 16, 15, 17, 21 }
n_timeline = 7

-- find an index different from the old one
while index == oldIndex do

-- use the random function to set index
index = math.random(1,n_timeline)

end

-- store the index for next time round
oldIndex = index

-- start the timeline whose number is at entry 'index'
get_timeline(timeline[index]):start()

Stopping A Range Of Timelines

Weneed to stop a large number of timelines in one go, but not all of them.

You can use up to 32 Actions on a Trigger, so if you need to stopmore than 32 Timelines at once, you will need to
use a script.

You can stop a single timeline from a script with the following:

get_timeline(1):stop()

This allows you to stop a single timeline from a script, but if you have a large number to stop, adding this for each
timeline is a lot of work.

A FOR loop can be used to reduce the amount of scripting required.

for i=1,10 do -- run through the values 1-10
get_timeline(i):stop() -- Stop the timeline defined by i

end

- 603 -

Pharos Designer User Manual

This script can be used to run through from 1 to 10 (or a different range by changing the values), and will stop the
timeline with those numbers. Tomake this more useful, you can put it in a function which allows you to call it with
any range of timeline numbers.

function stop_range(a, b) -- this defines the script as a function with two
variables (a and b)

for i=a,b do -- a FOR loop which runs through from a to b
get_timeline(i):stop() -- stop the timeline defined by i

end
end

stop_range(1,10) -- call the function with the variables 1 and 10

Note: It is generally best practice to define the function in a script that is run at startup, and then call the function
when it is needed

Make A Timeline Loop N Times

The designer has requested that a particular timeline runs once at sunset on aMonday, but twice at sunset on a
Tuesday, three times at sunset onWednesday, etc. He is planning to keep changing the timeline so does not want
to have lots of copies.

There are actually lots of perfectly reasonable ways to solve this using script. Let's assumewe have a single
astronomical clock trigger that fires at sunset and runs the following script:

N = get_current_time().weekday -- 0 is Sunday, 1 is Monday,...

-- we want Sunday to be 7 rather than 0
if N == 0 then

N = 7
end

get_timeline(1):start()

The timeline would be set to loop when it was programmed. We also put a flag on the timeline at the end andmake a
flag trigger that runs a second script:

-- decrement N
N = N - 1

if N == 0 then
-- release timeline 1 in time 5s
get_timeline(1):stop(5)

end

Note how this works by setting the value of the variable N in one script and then using that variable in another script,
which is often a useful technique.

I have used two scripts here, but it is possible to do the same job using only one - can you see how?

In this case you would have the sunset trigger start the timeline directly and use the following script on the flag
trigger:

-- is this the first time round?

- 604 -

Scripting Examples

if not N or N == 0 then
N = get_current_time().weekday -- 0 is Sunday, 1 is Monday,...

-- we want Sunday to be 7 rather than 0
if N == 0 then

N = 7
end

end

-- decrement N
N = N - 1

if N == 0 then
enqueue_trigger(2) -- runs action on trigger 2

end

The trick here is to detect whether it is the first time round the loop - if the Controller has started up today then N will
have no value and so not N will be true, otherwise N will have been left with the value zero when the script ran
yesterday. When we detect it is the first time then we set its initial value in the sameway as before.

I have also used a different method to do the timeline release. Rather than calling get_timeline(num):stop()
directly from the script I am causing trigger number 2 to fire. We can then configure trigger number 2 to have an
action that releases the correct timeline. It is sometimes easier to write scripts like this when they are going to be
sent out to a customer who does not know how tomodify them. In this case all the customer needs to know is to
modify the start and release timeline actions in the trigger window if they want to change which timeline is run - they
do not need tomodify the script.

Storing Data To The Memory Card

In the event that our controller reboots, we want it to start running the timeline that was running prior to the reboot.

The Lua library contains functions that make it possible to read and write files to the device the Lua is running on.
This includes reading and writing files on the Controller's Memory card.

running = 1

This variable will be used to store the number of the timeline that was startedmost recently,using a Timeline Started
Trigger (set to Any) with a Run Script action as below:

running = get_trigger_variable(1)

Storing data on thememory card involves two steps, writing to the card and reading back from the card.

function writeToCard() -- Write the running timelines table to the memory card
file = io.open(get_resource_path("timeline.txt"), "w+") -- Open or create a

file (in write mode) called timeline.txt
if (file ~= nil) then -- Ensure the file has been opened

io.output(file) -- Set the open file as the default output location for the
io library

io.write("running = " .. running) -- Write the line "running = [value]" to
the file. The value will be the value of the variable

io.flush() -- Clear the output buffer

- 605 -

Pharos Designer User Manual

io.close() -- Close the file
end

end

Whenever the function writeToCard is called it will store the current value of the variable running to thememory card
in a file called timeline.txt. The file will be in the format:

running = [value]

This is the syntax for defining a variable in Lua andmeans that if we run the file on startup, it will set the variable
running to be the value stored in the file (with no parsing required)

function readFromCard() -- Read the stored running timelines table and start
the timelines specified

file = io.open(get_resource_path("timeline.txt"),"r") -- Open the file
timeline.txt (in read mode) if it exists

if file ~= nil then -- Ensure the file has been opened
dofile(get_resource_path("timeline.txt")) -- Run the file to set the variable

end
get_timeline(running):start() -- Start the timeline stored in the running

variable
end

Whenever the function readFromCard is run, it will find the file called timeline.txt, run it so that the stored variable is
set on the controller and then start the relevant timeline

Note: Functions should be placed in a Run Script action at Startup to ensure they are declared. They can then be
used at any time within the show file.

Push Data To The Web Interface

If you are using a CustomWeb Interface, it is possible to push data to it from the project file e.g. when a TPC Slider
is moved. You will then need to set up some Javascript within your custom web interface to read the data in.

If we want to send the level of a TPC slider to the web interface, we would use a TPC Slider Move Trigger set to
match the Slider's Key. This would have a Run Script Action attached with the following Lua Script

level = get_trigger_variable(1) -- Capture the level set on the slider

push_to_web("slider_level",level) -- creates a JSON packet in the form {slider_
level:level}, where level is the value stored previously

Then within the web interface, we need to use the subscribe_lua() function to process this data.

Implementing An Interactive Game For A Science Museum

In an exhibit children are posed questions and have to select answers from an array of numbered buttons. The
buttons are large with RGB backlights that are controlled by a Controller to highlight choices and indicate right and
wrong answers. Questions are displayed by a slide projector which is under RS232 control from the Controller. The
buttons are wired to contact closures on the Controller and on RIOs, so that the Controller can check answers and
determine the progress of the game accordingly. The lighting in the rest of the room is designed tomimic a popular
TV quiz show to retain the children's interest, with different timelines for each stage of the game.

- 606 -

Scripting Examples

I am not going to work through this example - but the key point is that it should now be clear to you that a Controller
could be used to implement this sort of advanced interactive exhibit with the use of script. Try breaking down the
problem into discrete parts and you will find that no individual part of this is difficult - although getting it all to function
together reliably would no doubt require a lot of work. The Controller is a viable alternative to custom software
running on a PC and has clear advantages in terms of durability and cost.

- 607 -

Pharos Designer User Manual

API Change Log
Changes in API v4 from API v3
Introduced in Designer 2.7

l Add get_network_primary to Controller API.
l Add is_network_primary flag to controller entries in Controller API query response.
l Add description to trigger entries in Trigger HTTP API response.
l Add timeline custom properties to Lua andWeb APIs.
l Add type query param to trigger GET request to filter returned triggers on type.
l AddHTTP API endpoint andQuery API call for getting information about the current replication.
l get_dmx_input now returns nil if channel is not in range.
l AddNODE protocol cases to Protocol andOutput API queries.
l AddNODE protocol cases to Disable Output, Park a Channel and Unpark a Channel actions.
l Add get_log_level, get_syslog_enabled, get_syslog_ip_address, get_ntp_enabled, and get_ntp_ip_address
to Controller API.

l AddHTTP API endpoint andQuery API call for getting information about the controller's configuration.
l Add set_log_level to Controller API.
l Document HTTP API endpoint for editing the controller's configuration.
l AddQuery API call corresponding to the configuration edit endpoint.

Changes in API v3 from API v2
Introduced in Designer 2.6

l Add broadcast_address to System API query.
l Remote Device query

o Added get_output function for RIO 44 and RIO 08.
l Added Adjustment lua object

Changes in API v2 from API v1
Introduced in Designer 2.5

l Temperature query
o 'core1_temp' and 'core2_temp' have been replace with 'core_temp'

l Time query
o Renamed 'utc' to 'local_time'

l Group query
o 'num' entry is now only present for user created groups

l Remote Device query
o RIO 44 outputs are now numbered 1-4 rather than 5-8
o Added set_output function for RIO 44 and RIO 08.

l Protocol query
o Now indicates if the protocol is disabled

l Output query
o Now indicates if the protocol of the universe is disabled

l Set TPC page
o new, optional, 'transition' argument

- 608 -

Issues

Issues
As you go through Designer, there will be occasions where something has been configured incorrectly. These will be
shown by the Issues icon . These issues, andmore will also be shownwhen you Upload.

If any issues are found, the Issues tab will be opened automatically and a description of each issue will be listed so
that you can take corrective action (or you can ignore and proceed if you like):

Issue - '?' will provide the specific details: Solution
RIO A doesn't provide frequency band ? Adjust the number of bands on the RIO A

? doesn't support Analog Input Change the Trigger or Controller/Remote
Device type

? doesn't support Digital Input Change the Trigger or Controller/Remote
Device type

? doesn't support DMX Input
? doesn't support eDMX pass-through Change the controller

? doesn't support MIDI In Change the device setting in theMidi Input
trigger to a device with MIDI Input

TPC has patch on DMX 1 but hasn't been configured with an EXT
or a proxy LPC

Configure an EXT or DMX Proxy, or
change the patch to eDMX

? is not a TPC Change the TPC triggers tomatch a TPC
? is not found in the project Add the remote device to the project
? isn't configured to receive DMX Input Configure the DMX input for the controller
?must be configured as an Audio input device Change theMode of the RIO A to Audio

?must be configured to have a held timeout for digital inputs Set a held timeout in the controller inter-
faces

?must be configured to have a repeat interval for digital inputs Set a repeat interval in the controller inter-
faces

?must be configured to have an EXT Configure an EXT for the specified con-
troller

A content target hasn't been set Select a content target for the action
A group hasn't been set Select a group for the action
A locationmust be set in Project Properties for waypoint
timelines to operate correctly Set a location for the project

A property hasn't been set Set the properties for the action
A scene hasn't been set Select a scene for the action
A timeline hasn't been set Select a timeline for the action or condition
All inputs on ? should be configured as either digital inputs or con-
tact closures

Configure all inputs on the Controller or
Remote Device

Button number hasn't been set Set a button number on the BPS button
condition

Content target transitions are only supported on VLC+ Add a VLC+ to your project, or remove the
action

Controller doesn't have aMIDI Out port Change the configured controller to a con-
troller with aMIDI Output (LPC)

Controller has configured serial port 2 but the associated device
only has one serial port

Change the serial port number in the serial
input and/or output to 1

Controller has live video programming but the associated device Remove the Live Video preset, or add a

- 609 -

Pharos Designer User Manual

hasn't been upgraded to support video capture LPC X with video capture card or a
VLC/VLC+

Controller has no fixtures patched to it Patch one or more fixtures to the controller
Controller is configured to receive DMX Input but the associated
device doesn't support DMX Input Change the DMX input to an eDMX source

Controller is configured with an EXT but the associated device
has no attached EXT

Connect the TPC to an EXT, ensure EXT
is in v2 or uncheck the Configure EXT box

Controller is not a TPC Change the controller associated with the
TPC actions to a TPC

Controller is outputting KiNET so youmust ensure that the pro-
tocol network interface is on the same network as the patched
power supplies

Configure the Network 2 (Protocol) set-
tings to the same network as the KiNet
power supplies

Controller isn't associated with a device Associate the controller with an attached
device.

Device number is not set Set a remote device number
Device type is not set Set a remote device type
Digital Word is not supported on ? Change the remote device type
eDMX pass-through for universe ? requires a controller with at
least ? DMX ports
eDMX pass-through requires TPC to be configured with an EXT Configure the TPC with an EXT

Enqueued trigger ? is not found in the project Change the trigger number in the Enqueue
Trigger action

Ethernet bus ? uses port ? which clashes with the internal web
server and will prevent correct operation

Change the HTTP port or the ethernet bus
port

Input ?must be configured as a digital input or contact closure Change the input to a Digital or Contact
Closure

Input ?must be configured as an analog input Change the input to Analog
Input ? of ?must be configured as a digital input or contact clos-
ure

Change the input on the remote device to a
Digital or Contact Closure

Input ? of ?must be configured as an analog input Change the input on the remote device to
Analog

Input number hasn't been set Set an Input number on the trig-
ger/condition

Interface font is not found Choose a different font for the interface
Location hasn't been set in Project Properties Set a location in the project properties

No colours have been enabled Select at least one colour in the Set
RGB action/s

No DALI interface is selected Select a DALI interface

NoDMX port is selected Select a DMX port in the eDMX pass
through action

No error has been selected to check Select an error in the DALI ballast error
No group has been set to release Select a group in the Release All action
No interface has been chosen Add an interface to the TPC
No page has been assigned Select a page in the Set TPC Page action
No script has been assigned Select a Script in the Run Script Action
No targets have been set to release Configure the Release All action
Not set to match any data Set the input string for the trigger
Not set to send any data Set the string to output

- 610 -

Issues

Note Onwith zero velocity will never match Reconfigure theMIDI input

Power supply has an invalid IP address Set a valid IP address for the
KiNET Power Supply

Source is not set Set the Bus for the Ethernet Input
Sourcemedia is not found Replace the sourcemedia
The associated device is missing its memory card Replace thememory card

The associated device is not online Reassociate the controller, or reconnect
the controller

The associated device is on the wrong network Change the network settings of the con-
troller or computer

The associated device is running the wrong firmware Reload firmware
The associated device's memory card is corrupt Replace the controller's memory card
The associated device's memory card is read-only Unlock thememory card

The chosen audio bus doesn't have band ? Increase the number of audio buses on the
RIO A

The chosen audio bus has no input assigned to it Change the audio bus, or link a RIO A to
the audio bus

The chosen timecode bus has no input assigned to it Change the timecode bus, or link a time-
code source to the timecode bus

The same variable is used to select the BPS number and the but-
ton number

Change the variable number to use for the
BPS or button

The same variable is used to select the IP address and the port Change the variable numbers to use for the
IP address or port

The same variable is used to select the slot name and set the slot
value

Change the variable numbers to use for the
slot name and slot value

The script has no source Check the source of the script
The script has not compiled Check the source of the script for errors

The serial port of ? is set to DMX Out Change the Serial port to a serial protocol,
or choose a different port

The serial port of ? must be set to DMX Input Change the Serial port to DMX input, or
choose a different port

The serial port of ? must be set to RS232 or RS485 Change the Serial port
The slot name has not been set Set a slot name for the Set Text Slot action
There is only 1 serial port on ? Change the serial port number to 1

- 611 -

Pharos Designer User Manual

Frequently Asked Questions
Software
Is the free software a cut-down demo version?
No. The free Designer software is the full software package. Downloads and updates can be found at our website.

What are the PC minimum requirements for Designer software?
l Microsoft Windows 7/8/10 (64bit)
l AppleMac OS X 10.8.x (Mountain Lion) – 10.12.x (Sierra)
l Intel Core i3 processor or above
l 2GB RAM
l 1GB free hard disk space
l 1024×768 screen resolution
l OpenCL 1.2 graphics support (for VLC/VLC+ simulation)
l Network connection (for connecting to Pharos hardware)

Are project files compatible across versions and platforms?
Any project file saved in an earlier version of Designer 2 can be loaded by a later version.

However, a project file saved in a later version of Designer may not be backward compatible as we reserve the right
to make structural changes to improve the product.

Project files are compatible between the PC andMac versions of the software.

Project files created in Designer v1.x.x are incompatible with Designer 2, but can be converted using the Project
Migration Tool.

Can I have multiple versions of Designer on my computer?
Yes, provided the installation location (Windows) or application name (Mac) are different.

Can I have Designer v1.x.x and Designer 2 on my computer?
Yes, provided the installation location (Windows) or application name (Mac) are different (this is allowed by default).

What do you do with my software registration information?
Weonly capture your details so we can inform you of news and software updates, etc. The data is not distributed to
3rd parties nor used for any other purpose.

What documentation is available?
For setup and configuration of the hardware we provide an Installation Guide. This is available as a PDF and a
printed version is shipped with every Controller. There is user help available within the software (this document), this
is also available as a PDF for printing. See our website for digital copies of all documentation.

Howmany timelines can I program? Howmany fixtures, etc?
See system limits and capacities.

How can I tell what DMX levels are being generated?
During programming, when simulating using Output Live, there is a DMX viewer available in the View menuwhich

- 612 -

http://www.pharoscontrols.com/support.php#documentation

Frequently asked questions

displays the DMX values generated by Designer. During Controller playback you can use the web interface to view
the Controller's DMX output.

Backing up?
Designer can keep a number old versions of the project file when you save. In the Preferences dialog you can set the
number of old files to keep. Before saving your project, Designer will rename the project file on disk by adding the
current time and date to the file name, such as my_project_bak_2007-04-18_15-58-09.pd2. If you already have the
number of specified backups, the oldest backup will be removed from the disk.

The rest is up to you so save early, save often. Use File > Save As to producemanual backups of the project at each
important programmingmilestone.

What are the Pharos Designer file extensions?
*.pd2 Pharos Designer Project file

*.archive.pd2 Pharos Designer Archived project file, contains referencedmedia & background Layout image so
can grow quite large, use this to transfer and archive projects

.upload.pd2 Pharos Designer snapshot file, compressed file that can be uploaded to a controller
Can the project file be retrieved from the Controller(s)?
Yes, there is an option to download the project file from the controller's Web Interface, or from within Network Mode
of Designer

How best to Share a Project?
Archive the project (MainMenu> Archive Project) and save the *.archive.pd2 file. This file will include any media that
was added to the project file.

How do I programme RS232, RS485 or Ethernet triggers?
Pharos Controllers can send and receive triggers from 3rd party devices over RS232 Serial, RS485 Serial and
Ethernet protocols. Programming these all involve entering a string of characters in the trigger parameter pane.
These can be entered in three formats; ASCII, Hex & Decimal.

Essentially, the format and string entered depends entirely on the other device. In the Designer trigger/action fields
enter exactly the same string as the other device sends, or is expecting to receive. Simply match the string.

Some devices will have a fixed string. For example, the Dynalite button panel sends "1c0164000000ff<c>" if button
1 is pressed. Therefore in an RS485 trigger the same hex characters are entered in the String box.

Other devices may accept customisable messages, allowingmeaningful names, descriptions or comments to be
entered in an ASCII format (ASCII being standard letters & numbers). In this instance youmay create a string in the
other device such as "play timeline 6". Then in Designer, the ASCII string entered for the trigger will also be "play
timeline 6". The action will be to start timeline 6. For a useful user interface it may be that the user choice and string
may be descriptive, such as "red walls, blue ceiling". The trigger string in Designer will be "red walls, blue ceiling",
and start the appropriate timeline without the user needing to know what the timeline number is for the desired look.

Variables can also be used within these Serial and Ethernet strings. A message such as "GOxx" is valid, where the
xx is replaced with a two digit decimal number which will start the timeline with the corresponding number, rather
than having to assign distinct strings to every timeline. In Designer the string would be "GO<2d>" which indicates
the system will expect a 2 digit variable. The action would still be Start Timeline, but rather than selecting a specific
timeline, set the Variable Index to 1.

- 613 -

Pharos Designer User Manual

A useful tip for programming the Controller is to be connected and utilize the Controller's log. Any messages on the
line will appear here, be it in nice friendly ASCII, or other formats. The string can be copied straight out of the log and
pasted into the parameters string box - eliminating the possibility for typos, etc. The trigger types can bemapped out
in advance with comments and actions, then whatever the other device sends can be grabbed accurately at the
time. The log is a great troubleshooting tool for checking what triggers have been received and what actions are fired
as a result.

Where are the variables in Actions?

Variables are now hidden behind an Advanced Feature button .

Fixtures
What happens if I need a fixture that isn't in the library?
If your fixture isn't in the library within Designer, check the Online Fixture Library.

If you need a fixture that is the same personality as an existing fixture, you can create a Fixture Alias, and if you
need a very similar fixture, you can create a Custom Fixture.

Alternatively, contact support with the DMX specification to get a personality written.

I have a fixture with lots of DMX modes, which mode should I use?
The "flat" mode that addresses each cell/element individually with no additional intensity master nor effects/macro
channels. Designer has been developed to get themost out of compound fixtures, typically LED battens, tubes and
tiles, by driving each element individually, without "help" or complication - virtual intensity channels are created as
required and arrays can be constructed onto which effects andmedia, far more powerful than any built-in function,
can be applied and precisely controlled. If in doubt please contact support.

I am trying to output RGB+ fixtures to a DVI Output and I'm not seeing the output I
expect, why not?
DVI only supports RGB, fixtures that support more colours than this will not be represented as expected .

An issue should be displayed within Designer to warn of this.

Hardware
What show control interfaces does the LPC 1, 2 & 4 support?
By providing RS232/RS485 serial (including DMX input), MIDI,Ethernet & digital/analog inputs, the LPC can
interface with many generic, off-the-shelf products and devices. Via the built-in web interface any browser (PC, Mac,
Mobile, etc) can utilise the hyperlinks for triggering and a custom web interface can be designed to provide a user-
friendly skin. Remote Devices provide further interfacing options e.g. remote RS232/RS485, SMPTE/EBU
timecode, audio input, DALI, MIDI, etc.

Is Pharos RDM compatible?
Yes, the hardware and Designer software supports RDM addressing andmode setting and wewill continue to add
features in future software versions.

Will I need more memory on the Controller?
The LPC 1, 2 & 4 ships with a 2GB memory card and the LPC X and VLC ships with a n SSD. Project data is very

- 614 -

Frequently asked questions

memory efficient and so it is unlikely that you will needmorememory.

However, heavy use of importedmediamay necessitate an upgrade and so you can easily replace the card for one
of greater capacity, please contact support for recommended cards.

Are there any diagnostic tools?
The LED status indicators on the Controllers serve a dual purpose. In normal operation they indicate system
functionality and activity. In an error state, they provide diagnostics, refer to the Installation Guide for details. There
is also a recovery tool that guides you through recovery for all controllers.

When should I use reset?
The reset button provides a convenient way to cycle power. It has exactly the same effect. There is no
recommendation to reset the Controllers periodically.

Should I keep Controllers in the field up-to-date with the latest firmware?
No, not unless you know that a problem you are having would be solved with an update or you need to change the
programming and need the new Designer features. For minor tweaks it's probably best to install the relevant
Designer version and do it with that. As a rule, if it's working, leave it be.

What warranty does Pharos offer?
Pharos hardware is warranted for 5 years. Please contact support if you are experiencing any issues.

What user serviceable parts are there in a Controller or Remote Device?
The Pharos product range has been designed for longevity and reliability. There is almost nothing user serviceable
apart from a battery for the realtime clock and the DMX driver ICs. Please contact support if you are experiencing
any issues.

Standards compliance?
The Pharos product range is manufactured to the highest quality in compliance with international standards, refer to
the product's Installation Guide for details.

How do I get a controller out of a Watchdog cycle?
Sometimes programming or a hardware error can cause a controller to rest due to theWatchdog straight after
booting. This can normally be corrected by removing the project file from the controller's memory card.

Additional protection has been added such that if the controller reboots more than 5 times, within 90 seconds of
startup (each time).

Network
How do the Pharos products cope with sharing a network with other, non-lighting
devices?
Pharos products can happily sit on any network. They do not broadcast a high volume of management messages
and will only listen to Pharos specific messages. However when using a Pharos system with eDMX networks can
be slowed down by a large amount of eDMX being transmitted as most protocols utilise network broadcast settings.

Which Network Interface is used for different Ethernet communcations?

- 615 -

Pharos Designer User Manual

Management Network 2 (Protocol)/Data Both/Either
Designer Communications eDMX Output Ethernet Input Triggers
Firmware Updates eDMX Input (for Triggering) Ethernet Output Actions
Controller to Controller/Remote Device communications eDMX for Pass Through IO Module Communications
HTTP API
Web Interface

Note: If an LPC or TPC is used without Network 2 configured, those communications will use themainManagement
interface.

What about remote focus units, portable control stations, IR, etc?
With a wireless network access point, any mobile device with wireless capability can be set to browse to the
Controller's web interface. The web interface includes status monitoring and logging, hyperlinks of all trigger events
and a command line.

The BPS and TPC have learning IR sensors, so they can be programmed to respond to any IR remote.

Is there a way to call up channels for focus?
Yes, on the Control page of the web interface there is a command line that can be setup to allow the user to enter
fixture intensity & RGB values. Alternatively, the Output page has a Park option to force a channel to a particular
level.

- 616 -

Troubleshooting

Troubleshooting
The following section lists common problems and their solutions, beginning with an explanation of the Controller's
LED indicators:

What are the Controller's LEDs telling me?

LPC Status LEDs

The Pharos logo will illuminate when power is applied to the Controller. The red LEDs on the top/front of the
Controller indicate the unit’s current status:

l The Active LED illuminates once the boot-up procedure has completed and is indicative of a fully functional
unit.

l The Ethernet LED(s) indicates network activity (not network link) while the remaining LEDs indicate com-
munication on the various ports of the Controller.

l The DMX (LPC), Output (TPC, LPC and LPC X) LEDs indicate that a valid project file has been loaded from
thememory card and that playback has started.

TPC Status LEDs

The Status LEDs on the TPC are located on the front under themagnetic overlay and on the back next to the
Ethernet connection.

l The Power LED illuminates to indicate that power is applied.
l The Active LED illuminates once the boot-up procedure has completed and is indicative of a fully functional
unit.

l The Ethernet LED indicates network activity (not network link).
l TheOutput LED indicates that a show is loaded and eDMX data is being output. (Only on the front)

Error Codes

Additionally the red status LEDs are used to indicate any boot failures of the Controller that prevent the unit from
going active.

LPC
In all cases the Active LED will be off.

l Ethernet & USB double flashing - failed to boot firmware (follow the recovery procedure detailed in Designer
Help)

l Ethernet, MIDI & USB triple flashing - memory cardmissing (insert or replace card)

TPC
In all cases the Active LED will be off.

l Ethernet & Output double flashing - failed to boot firmware (follow the TPC recovery procedure detailed in
Designer Help)

l Ethernet & Output triple flashing - memory cardmissing (insert or replace card)

- 617 -

Pharos Designer User Manual

LPC X
Indicated by double flashing the Ethernet M, Ethernet D and Serial I/O LEDs, followed by a 1 second pause.

The bottom three LEDs indicate the error:

l DVI Input - No SSD detected
l Output - Corrupt SSD - recover from USB
l Overtemp - Invalid hardware type

VLC
Indicated by double flashing the Ethernet M, Ethernet D and Serial I/O LEDs, followed by a 1 second pause.

The bottom three LEDs indicate the error:

l DVI Input - No SSD detected
l Output - Corrupt SSD - recover from USB
l Overtemp - Invalid hardware type

Why can't I see the Controller in the Designer Network window?
Presuming that the Controller has successfully booted its firmware (thus its Active LED illuminated) then there is a
communication problem between the Controller and the PC running Designer:

Ethernet Problems (network)

l Quit and restart Designer again once you're sure that the network is up, use your PC's LAN status tools.
l By default, the Controllers are set to obtain an IP address from aDHCP server, is there one on the network?
Put one up and reset the Controller or set a static IP address via USB.

l Is the Controller's firmware compatible with Designer? Update it with the Recovery Procedure.
l Is there a firewall running on your computer or network? This could be blocking themulticast discovery pack-
ets.

l Are there any managed switches on the network? Traffic storms from 3rd party devices? Try "pinging" the
Controller and other network debugging ploys beyond the scope of this document.

Ethernet Problems (one-to-one)

l For a direct, one-to-one connection between a computer and the controller, you can, use a normal network
cable because the network interfaces are auto-sensing.

l Quit and restart Designer again once you're sure that the is network up, use your PC's LAN status tools.
l By default, the Controllers are set to obtain an IP address from aDHCP server, is the PC running one? Set a
static IP address for both parties, the Controller via USB. If the controller doesn't receive an IP Address from
aDHCP Server, it will choose a 169.254.x.x address.

l Do you havemore than one network connection on the PC?Wireless perhaps? If so, did you choose the right
network, the one with the Controller, when you started Designer?

l Is the Controller's firmware compatible with Designer? Update it with the TPC recovery procedure, the LPC
recovery procedure or LPC X Recovery Tool.

- 618 -

Troubleshooting

Incorrect Ethernet Cable (CAT5/5E/6) Pairing

Not all electrical installers are aware of the subtleties of Ethernet cabling, in particular the correct pairing scheme.
While incorrectly paired short cables may work, longer cables almost certainly won't or may exhibit intermittent
errors. Note that simple continuity testers will NOT expose an incorrectly paired cable. See this Wikipedia topic for
details.

Firmware Issues

For a Controller (or Remote Device) to appear in the network table, it must be on firmware version v2.x.x. If the
controller is on firmware version v1.x.x, the FirmwareMigration Tool can be used to upgrade the controller to v2.x.x.

Note: Themigration tools stopped being updated in v2.5. These tools can be used to perform themigration, but a
further firmware upgrade will now be required.

I can see the Controller in Network but it is shown in grey?
Controllers must be on the same Ethernet subnet as the PC running Designer. Select the controller and change it's
IP settings accordingly.

I can see the Controller in Network but it is shown in red?
Controllers must be running the same version of firmware as the Designer software. Controllers with incompatible
firmware will be highlighted in red. Select the Controller in the network window and press Reload Firmware.

Simulation looks fine but when I upload to the LPC nothing happens?
l Fixtures not patched. Try Output Live or examine the DMX Viewer to debug.
l Output Live left turned on (although a dialog now warns of this when uploading).
l The LPC or TPC hasn't received a valid trigger to commence playback. Use the web interface to check
status, examine the log and fire triggers.

Trigger conditions do not work in simulation, why?
Trigger conditions are not tested by the simulator.

Output Live does nothing?
l Fixtures not patched.
l TheOutput LiveMask has been incorrectly set.

The Controller's playback performance is deteriorating over time, why?
If your project has large numbers of timelines set to Hold or Loop, and these timelines are never explicitly released,
then over time they will build up in the background and cause the Controller to struggle. Program your triggers to
ensure that such timelines are explicitly released when no longer needed.

Uploading was working OK but now always fails?
Thememory card has become corrupt andmust be formatted, use network configuration or the web interface.

- 619 -

http://en.wikipedia.org/wiki/Ethernet_over_twisted_pair

Pharos Designer User Manual

The controller doesn't load the project, why?
Sometimes a project file can be corrupted during transfer and cause the controller to reset shortly after booting. The
controller tracks this and will prevent the project file from being loaded so that the controller can still be accessed.
Review the project for potential errors and try to upload over a stable connection.

When I try to Upload I see a list of issues instead?
Designer will check things like triggers and hardware configuration tomake sure that there are no inconsistencies. If
any issues are found, the Issues tab will be opened automatically and a description of each issue will be listed so
that you can take corrective action, see Issues.

Is there a way of seeing what the Controller is doing?
Yes, Controllers generate a log which can be viewed either via the web interface or from within Designer using the
Controller Log in themainmenu:

See Log viewer for more details.

I have forgotten the Controller's password?
Youwill need to go on site and gain access to the Controller then contact support for further instructions.

When using DMX In on a LPC, is my DMX line terminated?
No. To terminate the DMX line you should add a 120Ohm resistor across the positive and negative terminals.

I can connect to the controller, but uploads fail
This is commonwith remote controllers when the Find function is used and is typically caused by only allowing
connections to Port 80 of the controller. Designer also uses port 38008 to upload the project to the controller.

The web interface doesn't populate with data
The web interface uses Web Socket connections (RFC 6455), and somemanaged networks, internet security
software and proxy servers block these connections. Ensure that your network and computer security allow this
connection.

I have checked the FAQ and troubleshooting but I'm still stuck?
Contact support, please be prepared to send in your project file.

- 620 -

Controller Recovery

Controller Recovery
The Pharos Recovery Tool can be used to recover a controller if its firmware becomes corrupted, or in the case of
the LPC X or VLC/VLC+, if the project file or settings need wiping.

LPC
The LPC has a built-in failsafe against firmware problems: it stores two versions of firmware. So if one copy of
the firmware fails to load, or becomes corrupted due to a loss of power during a firmware reload, the other can be
used instead. However, in the event that the LPC will not startup, there is amethod to recover the LPC using the
memory card.

Please follow these instructions carefully:

1. Remove thememory card from the LPC and insert it into your computer
2. Wipe all files on thememory card (ensure you havemade any necessary backups)
3. Locate the firmware folder in the Designer installation location or app bundle (see below)
4. Copy the file lpc.app from the firmware folder to thememory card
5. Reinsert thememory card into the LPC and restart the LPC. The LPC will boot, but will take longer to

boot than normal. Please be patient and wait for the Active LED to illuminate continuously
6. Connect to the LPC using Designer and reload the firmware as normal
7. Remove thememory card from the LPC and insert it into your computer again
8. Delete the lpc.app file from thememory card
9. Reinsert thememory card into the LPC and restart the LPC

Locating The Controller Firmware

Windows
The controller firmware is located in the firmware folder in the Designer installation location, which is in the
Program Files folder by default.

- 621 -

Pharos Designer User Manual

OS X
To locate the firmware folder in the app bundle onMac OS X, please follow these steps:

1. Navigate to the Applications folder located on the Hard Drive, typically namedMacintosh HD
2. Locate the Designer application
3. Right-click (or control-click) on it and choose Show Package Contents from themenu that appears
4. Now navigate to Contents/MacOS/firmware to find the file lpc.app

TPC
The TPC has a built-in failsafe against firmware problems: it stores two versions of firmware. So if one copy of
the firmware fails to load, or becomes corrupted due to a loss of power during a firmware reload, the other can be
used instead. However, in the event that the TPC will not startup, there is amethod to recover the TPC using
thememory card.

Please follow these instructions carefully:

1. Remove thememory card from the TPC and insert it into your computer
2. Wipe all files on thememory card (ensure you havemade any necessary backups)
3. Locate the firmware folder in the Designer installation location or app bundle (see below)
4. Copy the file tpc.app from the firmware folder to thememory card
5. Reinsert thememory card into the TPC and restart the TPC. The TPC will boot, but will take longer to

boot than normal. Please be patient and wait for the Active LED to illuminate continuously
6. Connect to the TPC using Designer and reload the firmware as normal
7. Remove thememory card from the TPC and insert it into your computer again
8. Delete the tpc.app file from thememory card
9. Reinsert thememory card into the TPC and restart the TPC

Locating The Controller Firmware

Windows
The controller firmware is located in the firmware folder in the Designer installation location, which is in the
Program Files folder by default.

OS X
To locate the firmware folder in the app bundle onMac OS X, please follow these steps:

1. Navigate to the Applications folder located on the Hard Drive, typically namedMacintosh HD
2. Locate the Designer application
3. Right-click (or control-click) on it and choose Show Package Contents from themenu that appears
4. Now navigate to Contents/MacOS/firmware to find the file tpc.app

LPC X
The first thing to note with the LPC X is that there are two versions, each requiring a different recovery
procedure.

- 622 -

Controller Recovery

LPC X Rev1

The LPC X rev1 contains a CF Card under the right hand front panel. This will need to be removed using a
2.5mm Allen Key, and the CF Card inserted into your computer (or a connected card reader).

Once you have connected your CF Card you will be prompted to choose it from your connected devices.

- 623 -

Pharos Designer User Manual

Finally choosing continue will reformat your CF Card with the correct firmware version

- 624 -

Controller Recovery

LPC X Rev2

The LPC X rev2 is recovered using a single use bootable USB Memory stick, which is created with the rev2
option in the recovery tool.

You will need to select which of the additional optional steps that you want to perform.

You will need to insert a USB memory stick into your computer. Bear in mind that thememory stick will be
reformatted and all data wiped during this process.

- 625 -

Pharos Designer User Manual

Once you have connected your memory stick you will be prompted to choose it from your connected
devices.

- 626 -

Controller Recovery

Finally choosing continue will create the bootable memory stick to recover the firmware on the LPC X and
perform any additional steps that you selected earlier.

VLC
The VLC is recovered in the sameway as the LPC X rev2

VLC+
The VLC is recovered in the sameway as the LPC X rev2

- 627 -

Pharos Designer User Manual

Conversion Overview
Note: The tools mentioned below are available up to v2.5. Migrating a project or controller can still be done with
theseMigration Tools but further upgrade will be required.

Projects
Pharos Designer 2 is an upgrade to the existing Pharos Designer v1.12.1, and as such all programming logic and
techniques are still valid, however there are new tools and processes tomake this programmingmethodology
quicker and simpler:

l Transform Tools
l Project Customisation Tool
l Trigger Filtering

If you want to upgrade an installation from v1.x.x to v2, or you are working on a project in v1.x.x and want to continue
working in v2, there is a tool which can be used to convert the v1.x.x file to a v2 file. SeeMigration Tools for more
information.

Hardware
Designer 2 can work with all Pharos hardware, except:

l LPC Rev 1 (Serial numbers lower than 006xxx)
l AVC

All other Pharos hardware can be used with Designer 2 and the firmware can be upgraded from v1.x.x to v2 using the
FirmwareMigration Tool . SeeMigration Tools for more information.

- 628 -

Migration Tools

Migration Tools
In the event that you are working on a project which has previously been programmed in a v1.x.x release of
Designer, there are someMigration Tools available to convert the v1.x.x project file and controller firmware to 2.5.x.

TheseMigration Tools are separate from Designer andmust be downloaded and installed separately to Designer 2.

Project Migration Tool

The Project Migration Tool can import a v1.x.x file and convert it to work with Designer 2.5.x.

To use this tool:

l Browse to the v1.x.x file with the v1 Browse button
l Select the output location for the v2 file with the Browse button
l Press the Convert button
l The Report section will display the progress of the conversion and the Errors section will display any potential
issues with the converted project file

l The Result of the conversion will be displayed at the bottom (Success or Failure)

- 629 -

Pharos Designer User Manual

Firmware Migration Tool

The FirmwareMigration Tool can be used to upgrade a controller with v1.x.x firmware to 2.5.x or to downgrade a
controller with 2.5.x firmware to v1.12.

To use this tool:

l Select the controller or remote device that you want to convert (v1 or v2)
l Click the button at the bottom (Upgrade/Downgrade) and the firmware will be converted.

If a controller is displayed in grey, it cannot be converted either because it is on the wrong IP range, or the controller
type is not supported by Designer 2.5

Special Considerations

If you are trying tomigrate a TPC+EXT:

l The TPC should NOT have a project file loaded.
l The TPC must be on a v2.x.x firmware to upgrade or downgrade the EXT

Tomigrate a remote device, the Remote Devicemust not be actively connected to a controller (meaning the Active
light should be flashing).

- 630 -

What's Changed from v1.x.x to v2.x.x

What's Changed From V1.x.x To V2.x.x
General

l Multi-screen support – pop out any tab into its ownwindow
l Multiple instances of the application can be run at the same time with different projects
l Openmultiple projects – copy and paste between projects
l Multi-level Undo/Redo
l Auto-save – your work is stored to disk as you go
l New Tab names and re-ordered to follow typical project workflow
l Advanced features are hidden until needed to simplify workflow
l Issues with your project configuration are automatically detected and reported

Project
l New Project wizard allowing quick setup of controllers and features.
l New view for managing projects and their properties
l Projects created in version 1 can bemigrated to version 2 using a standalone tool
l Project files can be downloaded from Controllers and opened in Designer
l New ‘Import Object’ featuremaking importing fixture and pixel matrix layouts, KiNET power supplies and
your patch from any delimited file type

l New ‘Export Object’ feature allows you to export fixture positions and pixel matrix layouts, KiNET power sup-
plies and your patch to CSV files for manipulation in spreadsheet tools such as MS Excel

l User can define custom properties for fixtures, layouts and timelines that will be shown in reports to helpman-
age other project data

Plan
l Multiple fixture layouts within a single project – simpler to model different areas of an installation or different
views of a 3D structure

l Fixture instances – allow a single fixture to appear multiple times on your layouts
l A fixture does not need to be on a layout to still be in your project
l New automatically generated ‘All Fixtures’ group in the fixture browser
l Searchable fixture library – easier to find the fixture you need
l Folders for Recent and Used fixture types in the fixture library
l Online fixture library – wider range of fixtures can be downloaded from our servers
l Fast single-click placement of new fixtures – nomore drag-and-drop to add fixtures
l Change Fixture Type function supported
l Create Custom Type From allows custom fixtures to be created from fixtures in library
l New Transform Tools allow selected fixtures to be aligned, rotated and redistributed
l New ‘Snap to Fixtures’ toggle
l Fixture groups can now be numbered and used in scripts
l New Stretch and Fill setting for background images
l Holding shift while doing a lasso selection allows fixture position to determine group order
l Press Escape to clear fixture selection – press it again to recall last selection

Patch
l Add the universes you are going to use in the project rather than having them all present
l Offset patching so a group of fixtures can be patched with custom spacing

- 631 -

Pharos Designer User Manual

l Two universes of Ethernet DMX pass-through to local DMX Output Ports

Mapping
l Importingmedia no longer requires Quicktime to be installed
l Media files can be organised with folders and searched
l Media files can be previewed in a built in media player

Scene
l New “Scene” tab – replaces theMovers tab and as well as controllingmoving lights this also offers a new
way to create static colour looks for regular fixtures

l Folder structure for scenes

Timeline
l Improvedmanagement of timelines
l Tabs for fast switching between the timelines you are working on
l Fast single-click placement of presets – hold Ctrl or Cmd if you want to addmultiple
l Modify preset settings before or after you place on the timeline
l Favourite colours can now more easily be saved andmanaged
l Multi-element copy and paste
l After changes programming rebuilds in the background tomake the user interfacemore responsive
l A timeline can be given one of 4 group designations and timelines can be acted upon by group in triggers

Interface Editor
l The touch panel Interface Editor is now an integrated part of the Designer software
l Havemultiple layouts for each TPC open at once
l Can copy and paste entire pages of an interface

Triggers
l Complete rework of the triggers user interface and how you add or edit triggers
l Copy/paste conditions or actions into other triggers
l Edit multiple actions/conditions at the same time
l Filter triggers by type or tag them with group designation
l Script editor moved to its own area and ability to manage scripts independently
l Set RGB actions can now also set intensity
l Set RGB actions can now be given a playback priority
l Groups can now be selected by number in Set/Clear RGB actions
l Improved handling for variables when passed into and out of scripts

Simulate
l Tabbed environment to see simulation on any layout
l Audio track selection and sync’d playback for listening to an audio track while simulating.
l Output Live now allows the user to selectively take control of fixtures being programmed so that other parts of

the project continue to run uninterrupted

- 632 -

What's Changed from v1.x.x to v2.x.x

Network
l Network tab can be used to configure Controllers without an open project
l Projects can be downloaded from aController from within Designer
l Discover controllers by IP address allows user to enter IP address of controllers that are not on the local net-
work

l Connect to controllers over USB behaves the sameway as Ethernet

Web Interface
l New improved layout
l Projects can be uploaded to or downloaded from controllers using their web interface
l Project status shows scenes and timelines
l Log filtering options with more than 5 times the log information stored
l User access control by view
l New file manager for uploading additional project files
l New network view for an easy overview of project Controllers and Remote Device status
l Formatting (CSS) and images of the standard web interface can be customised
l Simpler management of custom web interfaces

- 633 -

Pharos Designer User Manual

Script Conversion
The PharosProject Migration Tool can be used to convert a v1.x file into a v2.x file, and this should convert any
scripting within projects to the updated Lua API, however the conversion table below can be used when writing new
scripting from scratch:

V1.X.X V2.X.X Notes
realtime.XXX time.get_current_time().XXX
sunrise.XXX time.get_sunrise().XXX
sunset.XXX time.get_sunset().XXX
civil_dawn.XXX time.get_civil_dawn().XXX
civil_dusk.XXX time.get_civil_dusk().XXX
nautical_dawn.XXX time.get_nautical_dawn().XXX
nautical_dusk.XXX time.get_nautical_dusk().XXX

digital[index] get_input(index) Returns digital and analogue
values

DMXIN[channel] get_dmx_input(channel)
get_controller_number() get_current_controller().number
set_timecode_source_enabled
(source,enabled)

set_timecode_bus_enabled
(source,enabled)

start_timeline(num) get_timeline(num):start()
stop_timeline(num,time) get_timeline(num):stop(time)
halt_timeline(num) get_timeline(num):pause()
resume_timeline(num) get_timeilne(num):resume()
set_timecode_source(num,source,
offset)

get_timeline(num):set_timecode_source
(source,offset)

set_timecode_source(num,source,
band, channel, peak)

get_timeline(num):set_audio_source
(source, band, channel, peak)

is_timeline_running(num) get_timeline(num).is_running
is_timeline_onstage(num) get_timeline(num).is_onstage
stop_all() stop_all_timelines(fade) fade is optional

set_intensity(fixture,value, time) get_fixture_override(fixture):set_
intensity(value,time)

set_red(fixture, value, time) get_fixture_override(fixture):set_red
(value, time)

set_green(fixture, value, time) get_fixture_override(fixture):set_green
(value, time)

set_blue(fixture, value, time) get_fixture_override(fixture):get_blue
(value, time)

clear_fixture(fixture, time) get_fixture_override(fixture):clear()
clear_all(time) clear_all_overrides(time)
get_dmxout(universe) get_dmx_universe(universe) if universe is 1 or 2
get_dmxout(ARTNET + universe) get_artnet_universe(universe)

- 634 -

Script Conversion

get_dmxout(PATHPORT + universe) get_pathport_universe(universe)
get_dmxout(SACN + universe) get_sacn_universe(universe)
get_dmxout(get_kinet_universe
(powerSupplyNum, portNum))

get_kinet_universe(powerSupplyNum,
portNum)

DMXOUT[channel] get_XXX_universe(universe):get_
channel_value(channel)

DMXOUT is object returned from
get_dmxout(universe)

park(universe, channel, value) get_XXX_universe(universe):park
(channel, value)

unpark(universe, channel) get_XXX_universe(universe):unpark
(channel)

rio[input] rio:get_input(input) rio is object returned by get_rio
bps:set_LED(button,effect, intensity,
fade)

bps:set_led(button,effect, intensity,
fade)

variable[index] get_trigger_variable(index)

Please Note: These are only the functions that have changed between V1.x and V2.x. There are also newly added
functions which can be used to provide additional functionality which wasn't previously available. These can be
found here.

- 635 -

Pharos Designer User Manual

Software Release Notes
Release Notes
These are provided in the About tab in the Project Mode of Designer.

Software Licences

GPL

Portions of this software are licensed under the GNU General Public License version 2. The license is available in
the About section of the Project Mode of Pharos Designer.

To obtain this software either visit www.carallon.com or send a stamped self-addressed envelope containing a blank
CD or USB memory stick to:

GPLCompliance,
Carallon Limited,
International House,
7 High Street
Ealing Broadway
LondonW5 5DB
England

- 636 -

http://www.carallon.com/assets/files/gpl/

System limits & capacities

System Limits & Capacities
Pharos Designer imposes the following project limits which can not be exceeded:

Fixture Groups 1000
Fixtures 40000 Discrete or compound fixtures
Fixture ele-
ments 60000 Elements within compound fixtures eg. 18 per James Thomas Pixeline

1044
Pixel matrices 256
Pixel Matrix
Size (Pixels) 4096 x 49096

Frame arrays 1000 Instances of media, perlin noise, starfield, text and custom presets
deployed on timelines

Patch Uni-
verses 10000 Total number of patched universes in the project

Timelines 500
Layouts 64
Custom pre-
sets 256

Media presets 256 Importedmedia clips
Text slots 1024

Layers (Trans-
parency)

Standard Controllers - 4

VLC - 4

VLC+ - 8

Exceeding this will remove the first layer so that only 4 are running at
once

Fonts 128
Scenes 256
TPC/TPS
Pages in pro-
ject

10240 Total number of TPC/TPS pages within the project

TPC/TPS Inter-
faces in project 40

Triggers 1024
Conditions per
trigger 32

Actions per trig-
ger 32

Controllers 40 So if all LPC 2s then themaximum number of DMX universes in the pro-
ject is 80 (80 x 512 = 49960 DMX 512 channels)

Install Rep-
lications 100

Remote
Devices

A TPC or an LPC 1 can
support up to 16 remote
devices.

An LPC 2 can support up

Per controller per Designer project. If you are planning to usemore that
16 remote devices please contact support to discuss your requirements
in advance.

- 637 -

Pharos Designer User Manual

to 32 remote devices.

An LPC 4 can support up
to 64 remote devices.

An LPC X can support up
to 100 remote devices.

Remote
Devices in pro-
ject

200 Total number of remote devices in a single project

DALI Please see DALI Interfaces for DALI limitations
KiNET power
supplies 10000

Timecode
Buses 12 MIDI or linear (SMPTE/EBU) timecode sources

Network Buses 5 Ethernet trigger sources eg. UDP
Audio Buses 4 Audio trigger sources
Layout size
(pixels) 8192x8192 Layout and fixture library scale is 1cm:1pixel (0.394":1pixel)

VLC/LPC X
video input res-
olution

Max 1920x1080p30 Maximum video input resolution (DVI Input)

VLC
/VLC+ Layout
Size

16,000px / 2,073,600px
area

Maximum size of either dimension of a VLC/VLC+ Layout up to a total
maximum area (each fixture is 1 pixel)

VLC+ Com-
positions 100 per project

VLC Content
Target Size Max area 2million pixels

VLC+ Masks 8
VLC+
HD Players 4 Exceeding this will pause the first player so that only 4 are running at

once

VLC players 2 Exceeding this will pause the first player so that only 2 are running at
once

Web Interface
Connections 6 Connections to the controller's web server (each tab in a browser, or

separate device counts towards this limit)

As you can see from the above limits, the Pharos control system can scale to an impressive size that rivals even
state-of-the-art lighting consoles.

For very large projects, or projects where some of the above limitations are restrictive, please contact support to
discuss your requirements in advance.

Best Practices
Just like any other computational device, Controllers have a finite amount of resources available to them.

- 638 -

System limits & capacities

Triggering and Playback Expectations
The Pharos system is designed to spread the load across all Controllers in a project. You can aid this by patching
fixtures as evenly as possible across all Controllers.

As well as lighting playback, Controllers are often used as interfaces to a wider system. This was intentional and is
why the system is so flexible but bear in mind that if a Controller is being asked to deal with a substantial amount of
incoming triggers or outgoing actions (such as Ethernet or serial communications) then this may have a negative
impact on show playback and system responsiveness. If you have any questions about this, please contact support
with your project requirements and we'll be happy to advise.

Looping and Holding at End
If you need a timeline to run continuously, we'd always recommend setting it to hold at end (rather than loop) where
appropriate. A looping timeline requires significantly more processing power because the Controller has to track the
time position until released. You should always release timelines when they are not actively affecting output. More
information about the differences between loop and hold at end can be found here.

Transparency
Transparency is a very processor-intensive effect for Controllers to generate. Having one or two layers of
transparency on some fixtures will be fine, but having several layers on a fully patched LPC 4may cause some
playback to be choppier than normal.

TPC/TPS Pages
The limit above is for the total number of pages in a project, not for the number of pages in an interface.

The practical limit for number of pages is affected by the complexity of the pages in the interface, as this is due to the
internal memory size of the controller. A better real-world limit would be around 20 pages.

Media Encoding for Pixel Matrices and Primary/Secondary Content Targets
A Pharos project should be able to run any video, however some settings that are known to work well for video
without audio are as follows:

l Codec: h.264
l Frame rate: 33fps
l Keyframes: 33 frames
l Bitrate: 5Mbps ought to be sufficient for 1080p30, reducing to 1Mbps for 360p30
l Resolution: 1080p - Best results will be achieved by matching themedia resolution to the output resolution
(Pixel Matrix or Content Target)

Live Video Settings
The live video input on the LPC X and VLC/VLC+ can accept a variety of incoming resolutions and frame rates.
Choose a resolution below to show the accepted frame rate/s.

Resolution Frame Rate/s

- 639 -

Pharos Designer User Manual

Silent Install
There are circumstances where it may be required to perform a Silent Install of Pharos Designer. This can be
achieved using the /S argument when installing from the command line.

The following arguments are also available:

/USB_ETH_BRIDGE="[path]" : installs the Pharos USB to ethernet bridge at the given path

/SHORTCUT : creates a desktop shortcut

/STARTMENU : creates start menu shortcuts

/INSTDIR="[path]" : specified the installation directory.

- 640 -

Glossary

Glossary
B

bootloader
Bootstrap loader; a small software program, stored in internal flashmemory, that is responsible for loading
the firmware or operating system.

C

CIDR
"Classless Inter-Domain Routing", a way of specifying the range of IP Addresses that this device is able to
communicate with. The number (e.g. 24) refers to the number of bits of the address that must be the same.
CIDR 24 is equivalent to a Subnet Mask of 255.255.255.0

Composition
A collection of Content Targets, Content Overlays and Content Masks

compound fixture
A lighting fixture containingmore than one controllable element, for example an LED batten consisting of a
number of identical elements or pixels.

Content Mask
A defined area which can reduce(or increase) the RGBI levels of the output

Content Overlay
An additional output layer than can be used to output effects over the top of other content within a com-
position

Content Target
An output layer that media or effects can bemapped onto before being output to fixtures

D

DALI
"Digital Addressable Lighting Interface"; an industry standard digital lighting control protocol.

DHCP
"Dynamic Host Configuration Protocol"; a method of automatically assigning IP addresses.

DMX
USITT DMX512; an industry standard digital lighting control protocol.

E

eDMX
A shorthand term for DMX-over-Ethernet protocols, for example Art-Net.

- 641 -

Pharos Designer User Manual

F

favicon
an icon associated with a particular website, typically displayed in the address bar of a browser accessing
the site or next to the site name in a user's list of bookmarks.

firmware
The embedded operating system, stored in internal flashmemory or on thememory card.

fixture
Lighting instrument or luminaire.

G

Glossary
Example glossary term

group
A collection of fixtures or elements (pixels) within a fixture that provide a very useful shortcut for selecting
and programming them together as one.

I

IP address
"Internet Protocol" address, in the form xxx.xxx.xxx.xxx, which specifies the unique address for networked
equipment.

M

matrix
A two-dimensional array of fixtures such that each fixture, or element within a compound fixture, is mapped
to a pixel of the array.

Pixel Matrix
A two-dimensional array of fixtures such that each fixture, or element within a compound fixture, is mapped
to a pixel of the array.

Pixel Matrices
A two-dimensional array of fixtures such that each fixture, or element within a compound fixture, is mapped
to a pixel of the array.

Matrices
A two-dimensional array of fixtures such that each fixture, or element within a compound fixture, is mapped
to a pixel of the array.

MIDI
"Musical Instrument Digital Interface"; an industry standard communications protocol for musical instru-
ments.

mover
Any fixture that has control parameters beyond colour mixing (RGB, CMY etc) and intensity, typically an
automated light.

- 642 -

Glossary

moving light
Any fixture that has control parameters beyond colour mixing (RGB, CMY etc) and intensity, typically an
automated light.

N

namespace
A collection of Lua variables and functions collected together into a group (e.g. system contains sys-
tem.hardware_type and system.channel_capacity etc.)

NTP
"Network Time Protocol"; a means of transmitting time signals over a computer network, used to set real-
time clocks automatically to the correct time.

P

preset
The basic building block that is placed on a timeline to define what a fixture, or group of fixtures, is to do.
Roughly analogous to a cue.

R

RDM
"Remote DeviceManagement"; an extension to the USITT DMX512 protocol that allows for bi-directional
communication with the fixture for remote configuration and diagnostics purposes.

Replication
A "copy" of a project file with a different collection of hardware

RS232
EIA-232; an industry standard communications protocol for computing and telecommunications equipment.

RS485
EIA-485; an industry standard communications protocol for computing and industrial equipment.

T

timeline
The framework used to determine which presets are applied to which fixtures, when and for how long.
Roughly analogous to a cuelist.

V

variable
A value that can be captured from an input string that is used to determine the outcome of an action.

W

watchdog
A hardware device that monitors amicroprocessor and automatically forces a reset if themicroprocessor
stops responding.

- 643 -

Pharos Designer User Manual

wildcard
A method of specifying which character(s) of an input string should be ignored as padding. Wildcards are
also captured as variables and can be considered such if used to determine the outcome of an action.

- 644 -

	Contents
	Welcome
	New in v2.7
	Introduction
	Modes Overview
	User Interface
	Multiple Instances

	Keyboard Shortcuts
	System Requirements
	Pharos Hardware Requirements
	Computer System Requirements

	Hardware Overview
	Controllers
	VLC+
	Remote Devices

	Hardware Setup
	LPC 1/2/4
	LPC X, VLC, VLC+
	TPC
	TPS
	Remote Devices

	Port Specifications
	TPC Learning Infrared Receiver
	BPS Learning Infrared Receiver
	TPS Learning Infrared Receiver
	Project Overview
	New Project Wizard
	Quick Start
	Custom

	Project Properties
	Project Properties

	Project Features
	Protocols
	Trigger
	Devices
	Editors

	Web Interface
	Custom Interface Theme
	Custom Certificate
	Custom Web Interface
	Custom Command Line Parser
	Web Interface Access

	Custom Properties
	About
	Reports
	Layouts and Instances
	Default Layouts
	Instances
	VLC/ VLC+ Layouts

	Adding and Organising Fixtures
	Selecting fixtures
	Browser
	Layout
	Groups

	Customising Fixtures
	Fixture Alias
	custom Fixtures
	Fixture Templates

	Pixel Matrix Editor
	Composition Editor
	Media Presets
	Patch
	DALI
	Scene
	Direct Colour Control
	Working with Timelines
	Timeline Properties
	Working with Real Time
	Working with Timecode
	Working with Audio
	Changing the Timeline and Preset Defaults

	Working with Presets
	Preset Types and Properties
	Timing, Transitions & Precedent
	Timeline Audio
	Managing Timeline Audio
	Timeline Audio Properties

	Interface Overview
	Working with Interfaces
	Working with Pages
	Working with Controls
	Page Navigation
	Built-In Themes
	Dark Theme
	Light Theme
	Aurora Theme
	City Theme
	Lite Theme
	Theme Editor
	Trigger Overview
	Triggers
	Conditions
	Actions
	Variables
	IO Modules
	IO Module Instances

	Examples
	Simulate
	Simulation Audio
	Network Overview
	Controller Connection
	Device Association
	Device Configuration
	Device Properties
	Controller protocols
	Controller Interfaces
	Remote Devices
	Upload
	Cloud Association
	Default Web Interface
	Custom Web Interface
	JavaScript Query Library
	Examples

	Command line
	.htaccess Files
	Example Web Interface Structure
	Files

	Main Menu Tools Overview
	Output viewer
	Controller Log viewer
	Import Objects Overview
	Fixture
	Pixel Matrix
	KiNET Power Supply
	Patch
	TPC Interface
	Philips Color Kinetics
	Export Object
	Preferences
	Scripting Overview
	Custom Preset Programming Guide
	Custom Preset Scripting Examples
	Trigger Script Programming Guide
	Lua API (Triggering)
	Scripting Examples
	Conditions
	Actions

	Variants
	Introduction
	Usage
	Shorthand
	Variant Definition
	Default Variants

	API v4
	API Queries
	API Actions
	API Subscriptions
	API Objects

	API Authentication
	Cookie Authentication
	Token Authentication

	Legacy API
	API v3
	API Queries
	API Actions
	API Subscriptions
	API Objects

	API v2
	API Queries
	API Actions
	API Subscriptions
	API Objects

	API v1
	API Queries
	API Actions
	API Subscriptions
	API Objects

	Legacy API
	Legacy HTTP API
	JavaScript Query Interface
	Usage
	Examples

	JavaScript Query Examples
	Trigger Programming Guide
	Lua API (Triggering)
	Scripting Examples
	Conditions
	Actions

	API Change Log
	Changes in API v4 from API v3
	Changes in API v3 from API v2
	Changes in API v2 from API v1

	Issues
	Frequently asked questions
	Troubleshooting
	Controller Recovery
	Conversion Overview
	Projects
	Hardware

	Migration Tools
	What's Changed from v1.x.x to v2.x.x
	General
	Project
	Plan
	Patch
	Mapping
	Scene
	Timeline
	Interface Editor
	Triggers
	Simulate
	Network
	Web Interface

	Script Conversion
	Software release notes
	System limits & capacities
	Best Practices

	Silent Install
	Glossary

